Metamath Proof Explorer


Theorem muldmmbl2

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl2.1
|- F/_ x F
muldmmbl2.2
|- F/_ x G
muldmmbl2.3
|- ( ph -> S e. SAlg )
muldmmbl2.4
|- ( ph -> dom F e. S )
muldmmbl2.5
|- ( ph -> dom G e. S )
muldmmbl2.6
|- H = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) x. ( G ` x ) ) )
Assertion muldmmbl2
|- ( ph -> dom H e. S )

Proof

Step Hyp Ref Expression
1 muldmmbl2.1
 |-  F/_ x F
2 muldmmbl2.2
 |-  F/_ x G
3 muldmmbl2.3
 |-  ( ph -> S e. SAlg )
4 muldmmbl2.4
 |-  ( ph -> dom F e. S )
5 muldmmbl2.5
 |-  ( ph -> dom G e. S )
6 muldmmbl2.6
 |-  H = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) x. ( G ` x ) ) )
7 1 nfdm
 |-  F/_ x dom F
8 2 nfdm
 |-  F/_ x dom G
9 7 8 nfin
 |-  F/_ x ( dom F i^i dom G )
10 ovex
 |-  ( ( F ` x ) x. ( G ` x ) ) e. _V
11 9 10 6 dmmptif
 |-  dom H = ( dom F i^i dom G )
12 11 a1i
 |-  ( ph -> dom H = ( dom F i^i dom G ) )
13 3 4 5 salincld
 |-  ( ph -> ( dom F i^i dom G ) e. S )
14 12 13 eqeltrd
 |-  ( ph -> dom H e. S )