Metamath Proof Explorer


Theorem muldmmbl2

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl2.1 𝑥 𝐹
muldmmbl2.2 𝑥 𝐺
muldmmbl2.3 ( 𝜑𝑆 ∈ SAlg )
muldmmbl2.4 ( 𝜑 → dom 𝐹𝑆 )
muldmmbl2.5 ( 𝜑 → dom 𝐺𝑆 )
muldmmbl2.6 𝐻 = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) )
Assertion muldmmbl2 ( 𝜑 → dom 𝐻𝑆 )

Proof

Step Hyp Ref Expression
1 muldmmbl2.1 𝑥 𝐹
2 muldmmbl2.2 𝑥 𝐺
3 muldmmbl2.3 ( 𝜑𝑆 ∈ SAlg )
4 muldmmbl2.4 ( 𝜑 → dom 𝐹𝑆 )
5 muldmmbl2.5 ( 𝜑 → dom 𝐺𝑆 )
6 muldmmbl2.6 𝐻 = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) )
7 1 nfdm 𝑥 dom 𝐹
8 2 nfdm 𝑥 dom 𝐺
9 7 8 nfin 𝑥 ( dom 𝐹 ∩ dom 𝐺 )
10 ovex ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) ∈ V
11 9 10 6 dmmptif dom 𝐻 = ( dom 𝐹 ∩ dom 𝐺 )
12 11 a1i ( 𝜑 → dom 𝐻 = ( dom 𝐹 ∩ dom 𝐺 ) )
13 3 4 5 salincld ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ 𝑆 )
14 12 13 eqeltrd ( 𝜑 → dom 𝐻𝑆 )