Metamath Proof Explorer


Theorem smfdmmblpimne

Description: If a measurable function w.r.t. to a sigma-algebra has domain in the sigma-algebra, the set of elements that are not mapped to a given real, is in the sigma-algebra (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdmmblpimne.1 𝑥 𝜑
smfdmmblpimne.2 𝑥 𝐴
smfdmmblpimne.3 ( 𝜑𝑆 ∈ SAlg )
smfdmmblpimne.4 ( 𝜑𝐴𝑆 )
smfdmmblpimne.5 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
smfdmmblpimne.6 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
smfdmmblpimne.7 ( 𝜑𝐶 ∈ ℝ )
smfdmmblpimne.8 𝐷 = { 𝑥𝐴𝐵𝐶 }
Assertion smfdmmblpimne ( 𝜑𝐷𝑆 )

Proof

Step Hyp Ref Expression
1 smfdmmblpimne.1 𝑥 𝜑
2 smfdmmblpimne.2 𝑥 𝐴
3 smfdmmblpimne.3 ( 𝜑𝑆 ∈ SAlg )
4 smfdmmblpimne.4 ( 𝜑𝐴𝑆 )
5 smfdmmblpimne.5 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
6 smfdmmblpimne.6 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
7 smfdmmblpimne.7 ( 𝜑𝐶 ∈ ℝ )
8 smfdmmblpimne.8 𝐷 = { 𝑥𝐴𝐵𝐶 }
9 5 rexrd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
10 7 rexrd ( 𝜑𝐶 ∈ ℝ* )
11 10 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
12 1 9 11 pimxrneun ( 𝜑 → { 𝑥𝐴𝐵𝐶 } = ( { 𝑥𝐴𝐵 < 𝐶 } ∪ { 𝑥𝐴𝐶 < 𝐵 } ) )
13 8 12 eqtrid ( 𝜑𝐷 = ( { 𝑥𝐴𝐵 < 𝐶 } ∪ { 𝑥𝐴𝐶 < 𝐵 } ) )
14 3 4 salrestss ( 𝜑 → ( 𝑆t 𝐴 ) ⊆ 𝑆 )
15 1 2 3 5 6 10 smfpimltxrmptf ( 𝜑 → { 𝑥𝐴𝐵 < 𝐶 } ∈ ( 𝑆t 𝐴 ) )
16 14 15 sseldd ( 𝜑 → { 𝑥𝐴𝐵 < 𝐶 } ∈ 𝑆 )
17 1 2 3 5 6 10 smfpimgtxrmptf ( 𝜑 → { 𝑥𝐴𝐶 < 𝐵 } ∈ ( 𝑆t 𝐴 ) )
18 14 17 sseldd ( 𝜑 → { 𝑥𝐴𝐶 < 𝐵 } ∈ 𝑆 )
19 3 16 18 saluncld ( 𝜑 → ( { 𝑥𝐴𝐵 < 𝐶 } ∪ { 𝑥𝐴𝐶 < 𝐵 } ) ∈ 𝑆 )
20 13 19 eqeltrd ( 𝜑𝐷𝑆 )