Step |
Hyp |
Ref |
Expression |
1 |
|
smfdmmblpimne.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfdmmblpimne.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
smfdmmblpimne.3 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfdmmblpimne.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
5 |
|
smfdmmblpimne.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
6 |
|
smfdmmblpimne.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
smfdmmblpimne.7 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
8 |
|
smfdmmblpimne.8 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝐶 } |
9 |
5
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
10 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
12 |
1 9 11
|
pimxrneun |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝐶 } = ( { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) ) |
13 |
8 12
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = ( { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) ) |
14 |
3 4
|
salrestss |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) ⊆ 𝑆 ) |
15 |
1 2 3 5 6 10
|
smfpimltxrmptf |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
16 |
14 15
|
sseldd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶 } ∈ 𝑆 ) |
17 |
1 2 3 5 6 10
|
smfpimgtxrmptf |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
18 |
14 17
|
sseldd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ∈ 𝑆 ) |
19 |
3 16 18
|
saluncld |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) ∈ 𝑆 ) |
20 |
13 19
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |