Metamath Proof Explorer


Theorem smfdivdmmbl

Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator (it is needed only for the function at the denominator). (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdivdmmbl.1 𝑥 𝜑
smfdivdmmbl.2 𝑥 𝐵
smfdivdmmbl.3 ( 𝜑𝑆 ∈ SAlg )
smfdivdmmbl.4 ( 𝜑𝐴𝑆 )
smfdivdmmbl.5 ( 𝜑𝐵𝑆 )
smfdivdmmbl.6 ( ( 𝜑𝑥𝐵 ) → 𝐷𝑊 )
smfdivdmmbl.7 ( 𝜑 → ( 𝑥𝐵𝐷 ) ∈ ( SMblFn ‘ 𝑆 ) )
smfdivdmmbl.8 𝐸 = { 𝑥𝐵𝐷 ≠ 0 }
Assertion smfdivdmmbl ( 𝜑 → ( 𝐴𝐸 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 smfdivdmmbl.1 𝑥 𝜑
2 smfdivdmmbl.2 𝑥 𝐵
3 smfdivdmmbl.3 ( 𝜑𝑆 ∈ SAlg )
4 smfdivdmmbl.4 ( 𝜑𝐴𝑆 )
5 smfdivdmmbl.5 ( 𝜑𝐵𝑆 )
6 smfdivdmmbl.6 ( ( 𝜑𝑥𝐵 ) → 𝐷𝑊 )
7 smfdivdmmbl.7 ( 𝜑 → ( 𝑥𝐵𝐷 ) ∈ ( SMblFn ‘ 𝑆 ) )
8 smfdivdmmbl.8 𝐸 = { 𝑥𝐵𝐷 ≠ 0 }
9 nfcv 𝑥
10 1 2 3 6 7 smffmptf ( 𝜑 → ( 𝑥𝐵𝐷 ) : 𝐵 ⟶ ℝ )
11 2 9 10 fvmptelcdmf ( ( 𝜑𝑥𝐵 ) → 𝐷 ∈ ℝ )
12 0red ( 𝜑 → 0 ∈ ℝ )
13 1 2 3 5 11 7 12 8 smfdmmblpimne ( 𝜑𝐸𝑆 )
14 3 4 13 salincld ( 𝜑 → ( 𝐴𝐸 ) ∈ 𝑆 )