| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smffmptf.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smffmptf.a | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | smffmptf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smffmptf.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 5 |  | smffmptf.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 6 |  | eqid | ⊢ dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 7 | 3 5 6 | smff | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ⟶ ℝ ) | 
						
							| 8 | 1 2 4 | dmmpt1 | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 10 | 9 | feq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ⟶ ℝ ) ) | 
						
							| 11 | 7 10 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) |