Metamath Proof Explorer


Theorem smffmptf

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smffmptf.x 𝑥 𝜑
smffmptf.a 𝑥 𝐴
smffmptf.s ( 𝜑𝑆 ∈ SAlg )
smffmptf.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
smffmptf.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
Assertion smffmptf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 smffmptf.x 𝑥 𝜑
2 smffmptf.a 𝑥 𝐴
3 smffmptf.s ( 𝜑𝑆 ∈ SAlg )
4 smffmptf.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
5 smffmptf.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
6 eqid dom ( 𝑥𝐴𝐵 ) = dom ( 𝑥𝐴𝐵 )
7 3 5 6 smff ( 𝜑 → ( 𝑥𝐴𝐵 ) : dom ( 𝑥𝐴𝐵 ) ⟶ ℝ )
8 1 2 4 dmmpt1 ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
9 8 eqcomd ( 𝜑𝐴 = dom ( 𝑥𝐴𝐵 ) )
10 9 feq2d ( 𝜑 → ( ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ ↔ ( 𝑥𝐴𝐵 ) : dom ( 𝑥𝐴𝐵 ) ⟶ ℝ ) )
11 7 10 mpbird ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )