| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smffmptf.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smffmptf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
smffmptf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smffmptf.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 5 |
|
smffmptf.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 6 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 7 |
3 5 6
|
smff |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℝ ) |
| 8 |
1 2 4
|
dmmpt1 |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 10 |
9
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℝ ) ) |
| 11 |
7 10
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |