| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smffmptf.x |
|- F/ x ph |
| 2 |
|
smffmptf.a |
|- F/_ x A |
| 3 |
|
smffmptf.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smffmptf.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 5 |
|
smffmptf.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 6 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
| 7 |
3 5 6
|
smff |
|- ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) |
| 8 |
1 2 4
|
dmmpt1 |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
| 9 |
8
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
| 10 |
9
|
feq2d |
|- ( ph -> ( ( x e. A |-> B ) : A --> RR <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) ) |
| 11 |
7 10
|
mpbird |
|- ( ph -> ( x e. A |-> B ) : A --> RR ) |