| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smffmptf.x |  |-  F/ x ph | 
						
							| 2 |  | smffmptf.a |  |-  F/_ x A | 
						
							| 3 |  | smffmptf.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smffmptf.b |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 5 |  | smffmptf.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 6 |  | eqid |  |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B ) | 
						
							| 7 | 3 5 6 | smff |  |-  ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) | 
						
							| 8 | 1 2 4 | dmmpt1 |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 10 | 9 | feq2d |  |-  ( ph -> ( ( x e. A |-> B ) : A --> RR <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) ) | 
						
							| 11 | 7 10 | mpbird |  |-  ( ph -> ( x e. A |-> B ) : A --> RR ) |