Metamath Proof Explorer


Theorem smffmptf

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smffmptf.x
|- F/ x ph
smffmptf.a
|- F/_ x A
smffmptf.s
|- ( ph -> S e. SAlg )
smffmptf.b
|- ( ( ph /\ x e. A ) -> B e. V )
smffmptf.m
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
Assertion smffmptf
|- ( ph -> ( x e. A |-> B ) : A --> RR )

Proof

Step Hyp Ref Expression
1 smffmptf.x
 |-  F/ x ph
2 smffmptf.a
 |-  F/_ x A
3 smffmptf.s
 |-  ( ph -> S e. SAlg )
4 smffmptf.b
 |-  ( ( ph /\ x e. A ) -> B e. V )
5 smffmptf.m
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
6 eqid
 |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B )
7 3 5 6 smff
 |-  ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR )
8 1 2 4 dmmpt1
 |-  ( ph -> dom ( x e. A |-> B ) = A )
9 8 eqcomd
 |-  ( ph -> A = dom ( x e. A |-> B ) )
10 9 feq2d
 |-  ( ph -> ( ( x e. A |-> B ) : A --> RR <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) )
11 7 10 mpbird
 |-  ( ph -> ( x e. A |-> B ) : A --> RR )