Step |
Hyp |
Ref |
Expression |
1 |
|
smffmpt.x |
|- F/ x ph |
2 |
|
smffmpt.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smffmpt.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
4 |
|
smffmpt.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
5 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
6 |
2 4 5
|
smff |
|- ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) |
7 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
8 |
1 7 3
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
9 |
8
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
10 |
9
|
feq2d |
|- ( ph -> ( ( x e. A |-> B ) : A --> RR <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) ) |
11 |
6 10
|
mpbird |
|- ( ph -> ( x e. A |-> B ) : A --> RR ) |