Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smffmpt.x | |- F/ x ph | |
| smffmpt.s | |- ( ph -> S e. SAlg ) | ||
| smffmpt.b | |- ( ( ph /\ x e. A ) -> B e. V ) | ||
| smffmpt.m | |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | ||
| Assertion | smffmpt | |- ( ph -> ( x e. A |-> B ) : A --> RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | smffmpt.x | |- F/ x ph | |
| 2 | smffmpt.s | |- ( ph -> S e. SAlg ) | |
| 3 | smffmpt.b | |- ( ( ph /\ x e. A ) -> B e. V ) | |
| 4 | smffmpt.m | |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | |
| 5 | nfcv | |- F/_ x A | |
| 6 | 1 5 2 3 4 | smffmptf | |- ( ph -> ( x e. A |-> B ) : A --> RR ) |