Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smffmpt.x | |- F/ x ph |
|
smffmpt.s | |- ( ph -> S e. SAlg ) |
||
smffmpt.b | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
smffmpt.m | |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
||
Assertion | smffmpt | |- ( ph -> ( x e. A |-> B ) : A --> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smffmpt.x | |- F/ x ph |
|
2 | smffmpt.s | |- ( ph -> S e. SAlg ) |
|
3 | smffmpt.b | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
4 | smffmpt.m | |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
|
5 | nfcv | |- F/_ x A |
|
6 | 1 5 2 3 4 | smffmptf | |- ( ph -> ( x e. A |-> B ) : A --> RR ) |