| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflim2.n |  |-  F/_ m F | 
						
							| 2 |  | smflim2.x |  |-  F/_ x F | 
						
							| 3 |  | smflim2.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | smflim2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | smflim2.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 |  | smflim2.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 7 |  | smflim2.d |  |-  D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } | 
						
							| 8 |  | smflim2.g |  |-  G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 9 |  | nfcv |  |-  F/_ j F | 
						
							| 10 |  | nfcv |  |-  F/_ y F | 
						
							| 11 |  | nfcv |  |-  F/_ x Z | 
						
							| 12 |  | nfcv |  |-  F/_ x ( ZZ>= ` n ) | 
						
							| 13 |  | nfcv |  |-  F/_ x m | 
						
							| 14 | 2 13 | nffv |  |-  F/_ x ( F ` m ) | 
						
							| 15 | 14 | nfdm |  |-  F/_ x dom ( F ` m ) | 
						
							| 16 | 12 15 | nfiin |  |-  F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | 
						
							| 17 | 11 16 | nfiun |  |-  F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | 
						
							| 18 |  | nfcv |  |-  F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | 
						
							| 19 |  | nfv |  |-  F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> | 
						
							| 20 |  | nfcv |  |-  F/_ j ( ( F ` m ) ` y ) | 
						
							| 21 |  | nfcv |  |-  F/_ m j | 
						
							| 22 | 1 21 | nffv |  |-  F/_ m ( F ` j ) | 
						
							| 23 |  | nfcv |  |-  F/_ m y | 
						
							| 24 | 22 23 | nffv |  |-  F/_ m ( ( F ` j ) ` y ) | 
						
							| 25 |  | fveq2 |  |-  ( m = j -> ( F ` m ) = ( F ` j ) ) | 
						
							| 26 | 25 | fveq1d |  |-  ( m = j -> ( ( F ` m ) ` y ) = ( ( F ` j ) ` y ) ) | 
						
							| 27 | 20 24 26 | cbvmpt |  |-  ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) | 
						
							| 28 |  | nfcv |  |-  F/_ x j | 
						
							| 29 | 2 28 | nffv |  |-  F/_ x ( F ` j ) | 
						
							| 30 |  | nfcv |  |-  F/_ x y | 
						
							| 31 | 29 30 | nffv |  |-  F/_ x ( ( F ` j ) ` y ) | 
						
							| 32 | 11 31 | nfmpt |  |-  F/_ x ( j e. Z |-> ( ( F ` j ) ` y ) ) | 
						
							| 33 | 27 32 | nfcxfr |  |-  F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) | 
						
							| 34 |  | nfcv |  |-  F/_ x dom ~~> | 
						
							| 35 | 33 34 | nfel |  |-  F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> | 
						
							| 36 |  | fveq2 |  |-  ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) | 
						
							| 37 | 36 | mpteq2dv |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 38 | 37 | eleq1d |  |-  ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) | 
						
							| 39 | 17 18 19 35 38 | cbvrabw |  |-  { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } | 
						
							| 40 |  | fveq2 |  |-  ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) ) | 
						
							| 41 | 40 | iineq1d |  |-  ( n = k -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) ) | 
						
							| 42 |  | nfcv |  |-  F/_ j dom ( F ` m ) | 
						
							| 43 | 22 | nfdm |  |-  F/_ m dom ( F ` j ) | 
						
							| 44 | 25 | dmeqd |  |-  ( m = j -> dom ( F ` m ) = dom ( F ` j ) ) | 
						
							| 45 | 42 43 44 | cbviin |  |-  |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | 
						
							| 46 | 45 | a1i |  |-  ( n = k -> |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) ) | 
						
							| 47 | 41 46 | eqtrd |  |-  ( n = k -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) ) | 
						
							| 48 | 47 | cbviunv |  |-  U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | 
						
							| 49 | 48 | eleq2i |  |-  ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) ) | 
						
							| 50 | 27 | eleq1i |  |-  ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> ) | 
						
							| 51 | 49 50 | anbi12i |  |-  ( ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) <-> ( y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) /\ ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> ) ) | 
						
							| 52 | 51 | rabbia2 |  |-  { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } = { y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> } | 
						
							| 53 | 7 39 52 | 3eqtri |  |-  D = { y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> } | 
						
							| 54 |  | nfrab1 |  |-  F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } | 
						
							| 55 | 7 54 | nfcxfr |  |-  F/_ x D | 
						
							| 56 |  | nfcv |  |-  F/_ y D | 
						
							| 57 |  | nfcv |  |-  F/_ y ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 58 |  | nfcv |  |-  F/_ x ~~> | 
						
							| 59 | 58 32 | nffv |  |-  F/_ x ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) | 
						
							| 60 | 27 | a1i |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) ) | 
						
							| 61 | 37 60 | eqtrd |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) ) | 
						
							| 62 | 61 | fveq2d |  |-  ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) ) | 
						
							| 63 | 55 56 57 59 62 | cbvmptf |  |-  ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) ) | 
						
							| 64 | 8 63 | eqtri |  |-  G = ( y e. D |-> ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) ) | 
						
							| 65 | 9 10 3 4 5 6 53 64 | smflim |  |-  ( ph -> G e. ( SMblFn ` S ) ) |