Metamath Proof Explorer


Theorem smflim2

Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). TODO: this has fewer distinct variable conditions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflim2.n
|- F/_ m F
smflim2.x
|- F/_ x F
smflim2.m
|- ( ph -> M e. ZZ )
smflim2.z
|- Z = ( ZZ>= ` M )
smflim2.s
|- ( ph -> S e. SAlg )
smflim2.f
|- ( ph -> F : Z --> ( SMblFn ` S ) )
smflim2.d
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> }
smflim2.g
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) )
Assertion smflim2
|- ( ph -> G e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 smflim2.n
 |-  F/_ m F
2 smflim2.x
 |-  F/_ x F
3 smflim2.m
 |-  ( ph -> M e. ZZ )
4 smflim2.z
 |-  Z = ( ZZ>= ` M )
5 smflim2.s
 |-  ( ph -> S e. SAlg )
6 smflim2.f
 |-  ( ph -> F : Z --> ( SMblFn ` S ) )
7 smflim2.d
 |-  D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> }
8 smflim2.g
 |-  G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) )
9 nfcv
 |-  F/_ j F
10 nfcv
 |-  F/_ y F
11 nfcv
 |-  F/_ x Z
12 nfcv
 |-  F/_ x ( ZZ>= ` n )
13 nfcv
 |-  F/_ x m
14 2 13 nffv
 |-  F/_ x ( F ` m )
15 14 nfdm
 |-  F/_ x dom ( F ` m )
16 12 15 nfiin
 |-  F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m )
17 11 16 nfiun
 |-  F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m )
18 nfcv
 |-  F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m )
19 nfv
 |-  F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~>
20 nfcv
 |-  F/_ j ( ( F ` m ) ` y )
21 nfcv
 |-  F/_ m j
22 1 21 nffv
 |-  F/_ m ( F ` j )
23 nfcv
 |-  F/_ m y
24 22 23 nffv
 |-  F/_ m ( ( F ` j ) ` y )
25 fveq2
 |-  ( m = j -> ( F ` m ) = ( F ` j ) )
26 25 fveq1d
 |-  ( m = j -> ( ( F ` m ) ` y ) = ( ( F ` j ) ` y ) )
27 20 24 26 cbvmpt
 |-  ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) )
28 nfcv
 |-  F/_ x j
29 2 28 nffv
 |-  F/_ x ( F ` j )
30 nfcv
 |-  F/_ x y
31 29 30 nffv
 |-  F/_ x ( ( F ` j ) ` y )
32 11 31 nfmpt
 |-  F/_ x ( j e. Z |-> ( ( F ` j ) ` y ) )
33 27 32 nfcxfr
 |-  F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) )
34 nfcv
 |-  F/_ x dom ~~>
35 33 34 nfel
 |-  F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~>
36 fveq2
 |-  ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) )
37 36 mpteq2dv
 |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) )
38 37 eleq1d
 |-  ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) )
39 17 18 19 35 38 cbvrabw
 |-  { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> }
40 fveq2
 |-  ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) )
41 40 iineq1d
 |-  ( n = k -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) )
42 nfcv
 |-  F/_ j dom ( F ` m )
43 22 nfdm
 |-  F/_ m dom ( F ` j )
44 25 dmeqd
 |-  ( m = j -> dom ( F ` m ) = dom ( F ` j ) )
45 42 43 44 cbviin
 |-  |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j )
46 45 a1i
 |-  ( n = k -> |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) )
47 41 46 eqtrd
 |-  ( n = k -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) )
48 47 cbviunv
 |-  U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j )
49 48 eleq2i
 |-  ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) )
50 27 eleq1i
 |-  ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> )
51 49 50 anbi12i
 |-  ( ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) <-> ( y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) /\ ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> ) )
52 51 rabbia2
 |-  { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } = { y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> }
53 7 39 52 3eqtri
 |-  D = { y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> }
54 nfrab1
 |-  F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> }
55 7 54 nfcxfr
 |-  F/_ x D
56 nfcv
 |-  F/_ y D
57 nfcv
 |-  F/_ y ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) )
58 nfcv
 |-  F/_ x ~~>
59 58 32 nffv
 |-  F/_ x ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) )
60 27 a1i
 |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) )
61 37 60 eqtrd
 |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) )
62 61 fveq2d
 |-  ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) )
63 55 56 57 59 62 cbvmptf
 |-  ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) )
64 8 63 eqtri
 |-  G = ( y e. D |-> ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) )
65 9 10 3 4 5 6 53 64 smflim
 |-  ( ph -> G e. ( SMblFn ` S ) )