| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflim2.n |
|- F/_ m F |
| 2 |
|
smflim2.x |
|- F/_ x F |
| 3 |
|
smflim2.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
smflim2.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
smflim2.s |
|- ( ph -> S e. SAlg ) |
| 6 |
|
smflim2.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 7 |
|
smflim2.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 8 |
|
smflim2.g |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 9 |
|
nfcv |
|- F/_ j F |
| 10 |
|
nfcv |
|- F/_ y F |
| 11 |
|
nfcv |
|- F/_ x Z |
| 12 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
| 13 |
|
nfcv |
|- F/_ x m |
| 14 |
2 13
|
nffv |
|- F/_ x ( F ` m ) |
| 15 |
14
|
nfdm |
|- F/_ x dom ( F ` m ) |
| 16 |
12 15
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 17 |
11 16
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 18 |
|
nfcv |
|- F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 19 |
|
nfv |
|- F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
| 20 |
|
nfcv |
|- F/_ j ( ( F ` m ) ` y ) |
| 21 |
|
nfcv |
|- F/_ m j |
| 22 |
1 21
|
nffv |
|- F/_ m ( F ` j ) |
| 23 |
|
nfcv |
|- F/_ m y |
| 24 |
22 23
|
nffv |
|- F/_ m ( ( F ` j ) ` y ) |
| 25 |
|
fveq2 |
|- ( m = j -> ( F ` m ) = ( F ` j ) ) |
| 26 |
25
|
fveq1d |
|- ( m = j -> ( ( F ` m ) ` y ) = ( ( F ` j ) ` y ) ) |
| 27 |
20 24 26
|
cbvmpt |
|- ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) |
| 28 |
|
nfcv |
|- F/_ x j |
| 29 |
2 28
|
nffv |
|- F/_ x ( F ` j ) |
| 30 |
|
nfcv |
|- F/_ x y |
| 31 |
29 30
|
nffv |
|- F/_ x ( ( F ` j ) ` y ) |
| 32 |
11 31
|
nfmpt |
|- F/_ x ( j e. Z |-> ( ( F ` j ) ` y ) ) |
| 33 |
27 32
|
nfcxfr |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) |
| 34 |
|
nfcv |
|- F/_ x dom ~~> |
| 35 |
33 34
|
nfel |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> |
| 36 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
| 37 |
36
|
mpteq2dv |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
| 38 |
37
|
eleq1d |
|- ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) |
| 39 |
17 18 19 35 38
|
cbvrabw |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
| 40 |
|
fveq2 |
|- ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) ) |
| 41 |
40
|
iineq1d |
|- ( n = k -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) ) |
| 42 |
|
nfcv |
|- F/_ j dom ( F ` m ) |
| 43 |
22
|
nfdm |
|- F/_ m dom ( F ` j ) |
| 44 |
25
|
dmeqd |
|- ( m = j -> dom ( F ` m ) = dom ( F ` j ) ) |
| 45 |
42 43 44
|
cbviin |
|- |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) |
| 46 |
45
|
a1i |
|- ( n = k -> |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) ) |
| 47 |
41 46
|
eqtrd |
|- ( n = k -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) ) |
| 48 |
47
|
cbviunv |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) |
| 49 |
48
|
eleq2i |
|- ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) ) |
| 50 |
27
|
eleq1i |
|- ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> ) |
| 51 |
49 50
|
anbi12i |
|- ( ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) <-> ( y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) /\ ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> ) ) |
| 52 |
51
|
rabbia2 |
|- { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } = { y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> } |
| 53 |
7 39 52
|
3eqtri |
|- D = { y e. U_ k e. Z |^|_ j e. ( ZZ>= ` k ) dom ( F ` j ) | ( j e. Z |-> ( ( F ` j ) ` y ) ) e. dom ~~> } |
| 54 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 55 |
7 54
|
nfcxfr |
|- F/_ x D |
| 56 |
|
nfcv |
|- F/_ y D |
| 57 |
|
nfcv |
|- F/_ y ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
| 58 |
|
nfcv |
|- F/_ x ~~> |
| 59 |
58 32
|
nffv |
|- F/_ x ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) |
| 60 |
27
|
a1i |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) ) |
| 61 |
37 60
|
eqtrd |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( j e. Z |-> ( ( F ` j ) ` y ) ) ) |
| 62 |
61
|
fveq2d |
|- ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) ) |
| 63 |
55 56 57 59 62
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) ) |
| 64 |
8 63
|
eqtri |
|- G = ( y e. D |-> ( ~~> ` ( j e. Z |-> ( ( F ` j ) ` y ) ) ) ) |
| 65 |
9 10 3 4 5 6 53 64
|
smflim |
|- ( ph -> G e. ( SMblFn ` S ) ) |