| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflim2.n | ⊢ Ⅎ 𝑚 𝐹 | 
						
							| 2 |  | smflim2.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smflim2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smflim2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smflim2.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smflim2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smflim2.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } | 
						
							| 8 |  | smflim2.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  (  ⇝  ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑦 𝐹 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑛 ) | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑥 𝑚 | 
						
							| 14 | 2 13 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) | 
						
							| 15 | 14 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 16 | 12 15 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 17 | 11 16 | nfiun | ⊢ Ⅎ 𝑥 ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑦 ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  dom   ⇝ | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑚 𝑗 | 
						
							| 22 | 1 21 | nffv | ⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑗 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑚 𝑦 | 
						
							| 24 | 22 23 | nffv | ⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑚  =  𝑗  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 26 | 25 | fveq1d | ⊢ ( 𝑚  =  𝑗  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) | 
						
							| 27 | 20 24 26 | cbvmpt | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑥 𝑗 | 
						
							| 29 | 2 28 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑗 ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 31 | 29 30 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) | 
						
							| 32 | 11 31 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) | 
						
							| 33 | 27 32 | nfcxfr | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑥 dom   ⇝ | 
						
							| 35 | 33 34 | nfel | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  ∈  dom   ⇝ | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 37 | 36 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  dom   ⇝   ↔  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  ∈  dom   ⇝  ) ) | 
						
							| 39 | 17 18 19 35 38 | cbvrabw | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  =  { 𝑦  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  ∈  dom   ⇝  } | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 41 | 40 | iineq1d | ⊢ ( 𝑛  =  𝑘  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑗 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 43 | 22 | nfdm | ⊢ Ⅎ 𝑚 dom  ( 𝐹 ‘ 𝑗 ) | 
						
							| 44 | 25 | dmeqd | ⊢ ( 𝑚  =  𝑗  →  dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 45 | 42 43 44 | cbviin | ⊢ ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 ) | 
						
							| 46 | 45 | a1i | ⊢ ( 𝑛  =  𝑘  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 47 | 41 46 | eqtrd | ⊢ ( 𝑛  =  𝑘  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 48 | 47 | cbviunv | ⊢ ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∪  𝑘  ∈  𝑍 ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 ) | 
						
							| 49 | 48 | eleq2i | ⊢ ( 𝑦  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  𝑦  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 50 | 27 | eleq1i | ⊢ ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  ∈  dom   ⇝   ↔  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) )  ∈  dom   ⇝  ) | 
						
							| 51 | 49 50 | anbi12i | ⊢ ( ( 𝑦  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  ∈  dom   ⇝  )  ↔  ( 𝑦  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 )  ∧  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) )  ∈  dom   ⇝  ) ) | 
						
							| 52 | 51 | rabbia2 | ⊢ { 𝑦  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  ∈  dom   ⇝  }  =  { 𝑦  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 )  ∣  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) )  ∈  dom   ⇝  } | 
						
							| 53 | 7 39 52 | 3eqtri | ⊢ 𝐷  =  { 𝑦  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑗 )  ∣  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) )  ∈  dom   ⇝  } | 
						
							| 54 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } | 
						
							| 55 | 7 54 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑦 (  ⇝  ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 58 |  | nfcv | ⊢ Ⅎ 𝑥  ⇝ | 
						
							| 59 | 58 32 | nffv | ⊢ Ⅎ 𝑥 (  ⇝  ‘ ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) | 
						
							| 60 | 27 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) | 
						
							| 61 | 37 60 | eqtrd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  (  ⇝  ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  (  ⇝  ‘ ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) | 
						
							| 63 | 55 56 57 59 62 | cbvmptf | ⊢ ( 𝑥  ∈  𝐷  ↦  (  ⇝  ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  (  ⇝  ‘ ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) | 
						
							| 64 | 8 63 | eqtri | ⊢ 𝐺  =  ( 𝑦  ∈  𝐷  ↦  (  ⇝  ‘ ( 𝑗  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) | 
						
							| 65 | 9 10 3 4 5 6 53 64 | smflim | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |