Metamath Proof Explorer


Theorem smflim2

Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). TODO: this has fewer distinct variable conditions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflim2.n 𝑚 𝐹
smflim2.x 𝑥 𝐹
smflim2.m ( 𝜑𝑀 ∈ ℤ )
smflim2.z 𝑍 = ( ℤ𝑀 )
smflim2.s ( 𝜑𝑆 ∈ SAlg )
smflim2.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflim2.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
smflim2.g 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
Assertion smflim2 ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smflim2.n 𝑚 𝐹
2 smflim2.x 𝑥 𝐹
3 smflim2.m ( 𝜑𝑀 ∈ ℤ )
4 smflim2.z 𝑍 = ( ℤ𝑀 )
5 smflim2.s ( 𝜑𝑆 ∈ SAlg )
6 smflim2.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smflim2.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
8 smflim2.g 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
9 nfcv 𝑗 𝐹
10 nfcv 𝑦 𝐹
11 nfcv 𝑥 𝑍
12 nfcv 𝑥 ( ℤ𝑛 )
13 nfcv 𝑥 𝑚
14 2 13 nffv 𝑥 ( 𝐹𝑚 )
15 14 nfdm 𝑥 dom ( 𝐹𝑚 )
16 12 15 nfiin 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
17 11 16 nfiun 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
18 nfcv 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
19 nfv 𝑦 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝
20 nfcv 𝑗 ( ( 𝐹𝑚 ) ‘ 𝑦 )
21 nfcv 𝑚 𝑗
22 1 21 nffv 𝑚 ( 𝐹𝑗 )
23 nfcv 𝑚 𝑦
24 22 23 nffv 𝑚 ( ( 𝐹𝑗 ) ‘ 𝑦 )
25 fveq2 ( 𝑚 = 𝑗 → ( 𝐹𝑚 ) = ( 𝐹𝑗 ) )
26 25 fveq1d ( 𝑚 = 𝑗 → ( ( 𝐹𝑚 ) ‘ 𝑦 ) = ( ( 𝐹𝑗 ) ‘ 𝑦 ) )
27 20 24 26 cbvmpt ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) )
28 nfcv 𝑥 𝑗
29 2 28 nffv 𝑥 ( 𝐹𝑗 )
30 nfcv 𝑥 𝑦
31 29 30 nffv 𝑥 ( ( 𝐹𝑗 ) ‘ 𝑦 )
32 11 31 nfmpt 𝑥 ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) )
33 27 32 nfcxfr 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
34 nfcv 𝑥 dom ⇝
35 33 34 nfel 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝
36 fveq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
37 36 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
38 37 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) )
39 17 18 19 35 38 cbvrabw { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
40 fveq2 ( 𝑛 = 𝑘 → ( ℤ𝑛 ) = ( ℤ𝑘 ) )
41 40 iineq1d ( 𝑛 = 𝑘 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑚 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑚 ) )
42 nfcv 𝑗 dom ( 𝐹𝑚 )
43 22 nfdm 𝑚 dom ( 𝐹𝑗 )
44 25 dmeqd ( 𝑚 = 𝑗 → dom ( 𝐹𝑚 ) = dom ( 𝐹𝑗 ) )
45 42 43 44 cbviin 𝑚 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑚 ) = 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 )
46 45 a1i ( 𝑛 = 𝑘 𝑚 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑚 ) = 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 ) )
47 41 46 eqtrd ( 𝑛 = 𝑘 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 ) )
48 47 cbviunv 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑘𝑍 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 )
49 48 eleq2i ( 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ↔ 𝑦 𝑘𝑍 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 ) )
50 27 eleq1i ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ )
51 49 50 anbi12i ( ( 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ↔ ( 𝑦 𝑘𝑍 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 ) ∧ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) )
52 51 rabbia2 { 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } = { 𝑦 𝑘𝑍 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 ) ∣ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
53 7 39 52 3eqtri 𝐷 = { 𝑦 𝑘𝑍 𝑗 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑗 ) ∣ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
54 nfrab1 𝑥 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
55 7 54 nfcxfr 𝑥 𝐷
56 nfcv 𝑦 𝐷
57 nfcv 𝑦 ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
58 nfcv 𝑥
59 58 32 nffv 𝑥 ( ⇝ ‘ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) )
60 27 a1i ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) )
61 37 60 eqtrd ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) )
62 61 fveq2d ( 𝑥 = 𝑦 → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ) )
63 55 56 57 59 62 cbvmptf ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦𝐷 ↦ ( ⇝ ‘ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ) )
64 8 63 eqtri 𝐺 = ( 𝑦𝐷 ↦ ( ⇝ ‘ ( 𝑗𝑍 ↦ ( ( 𝐹𝑗 ) ‘ 𝑦 ) ) ) )
65 9 10 3 4 5 6 53 64 smflim ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )