Step |
Hyp |
Ref |
Expression |
1 |
|
smflim2.n |
⊢ Ⅎ 𝑚 𝐹 |
2 |
|
smflim2.x |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
smflim2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
smflim2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
smflim2.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
6 |
|
smflim2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
smflim2.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
8 |
|
smflim2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐹 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑛 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
14 |
2 13
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
15 |
14
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
16 |
12 15
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
17 |
11 16
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
20 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑗 |
22 |
1 21
|
nffv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑗 ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑦 |
24 |
22 23
|
nffv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) |
25 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑗 ) ) |
26 |
25
|
fveq1d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
27 |
20 24 26
|
cbvmpt |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑗 |
29 |
2 28
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑗 ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
31 |
29 30
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) |
32 |
11 31
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
33 |
27 32
|
nfcxfr |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑥 dom ⇝ |
35 |
33 34
|
nfel |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ |
36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
37 |
36
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ) |
39 |
17 18 19 35 38
|
cbvrabw |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } |
40 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑘 ) ) |
41 |
40
|
iineq1d |
⊢ ( 𝑛 = 𝑘 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑗 dom ( 𝐹 ‘ 𝑚 ) |
43 |
22
|
nfdm |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑗 ) |
44 |
25
|
dmeqd |
⊢ ( 𝑚 = 𝑗 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑗 ) ) |
45 |
42 43 44
|
cbviin |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) |
46 |
45
|
a1i |
⊢ ( 𝑛 = 𝑘 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) ) |
47 |
41 46
|
eqtrd |
⊢ ( 𝑛 = 𝑘 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) ) |
48 |
47
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑘 ∈ 𝑍 ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) |
49 |
48
|
eleq2i |
⊢ ( 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) ) |
50 |
27
|
eleq1i |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
51 |
49 50
|
anbi12i |
⊢ ( ( 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ↔ ( 𝑦 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) ∧ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ) |
52 |
51
|
rabbia2 |
⊢ { 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } = { 𝑦 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) ∣ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ } |
53 |
7 39 52
|
3eqtri |
⊢ 𝐷 = { 𝑦 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑗 ) ∣ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ∈ dom ⇝ } |
54 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
55 |
7 54
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
56 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
57 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑥 ⇝ |
59 |
58 32
|
nffv |
⊢ Ⅎ 𝑥 ( ⇝ ‘ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
60 |
27
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
61 |
37 60
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
63 |
55 56 57 59 62
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
64 |
8 63
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
65 |
9 10 3 4 5 6 53 64
|
smflim |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |