Metamath Proof Explorer


Theorem smflim

Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflim.n 𝑚 𝐹
smflim.x 𝑥 𝐹
smflim.m ( 𝜑𝑀 ∈ ℤ )
smflim.z 𝑍 = ( ℤ𝑀 )
smflim.s ( 𝜑𝑆 ∈ SAlg )
smflim.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflim.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
smflim.g 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
Assertion smflim ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smflim.n 𝑚 𝐹
2 smflim.x 𝑥 𝐹
3 smflim.m ( 𝜑𝑀 ∈ ℤ )
4 smflim.z 𝑍 = ( ℤ𝑀 )
5 smflim.s ( 𝜑𝑆 ∈ SAlg )
6 smflim.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smflim.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
8 smflim.g 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
9 nfv 𝑎 𝜑
10 nfcv 𝑥 𝑍
11 nfcv 𝑥 ( ℤ𝑛 )
12 nfcv 𝑥 𝑚
13 2 12 nffv 𝑥 ( 𝐹𝑚 )
14 13 nfdm 𝑥 dom ( 𝐹𝑚 )
15 11 14 nfiin 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
16 10 15 nfiun 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
17 16 ssrab2f { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
18 7 17 eqsstri 𝐷 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
19 18 a1i ( 𝜑𝐷 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) )
20 uzssz ( ℤ𝑀 ) ⊆ ℤ
21 4 eleq2i ( 𝑛𝑍𝑛 ∈ ( ℤ𝑀 ) )
22 21 biimpi ( 𝑛𝑍𝑛 ∈ ( ℤ𝑀 ) )
23 20 22 sseldi ( 𝑛𝑍𝑛 ∈ ℤ )
24 uzid ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ𝑛 ) )
25 23 24 syl ( 𝑛𝑍𝑛 ∈ ( ℤ𝑛 ) )
26 25 adantl ( ( 𝜑𝑛𝑍 ) → 𝑛 ∈ ( ℤ𝑛 ) )
27 5 adantr ( ( 𝜑𝑛𝑍 ) → 𝑆 ∈ SAlg )
28 6 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) )
29 eqid dom ( 𝐹𝑛 ) = dom ( 𝐹𝑛 )
30 27 28 29 smfdmss ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ⊆ 𝑆 )
31 nfcv 𝑚 𝑛
32 1 31 nffv 𝑚 ( 𝐹𝑛 )
33 32 nfdm 𝑚 dom ( 𝐹𝑛 )
34 nfcv 𝑚 𝑆
35 33 34 nfss 𝑚 dom ( 𝐹𝑛 ) ⊆ 𝑆
36 fveq2 ( 𝑚 = 𝑛 → ( 𝐹𝑚 ) = ( 𝐹𝑛 ) )
37 36 dmeqd ( 𝑚 = 𝑛 → dom ( 𝐹𝑚 ) = dom ( 𝐹𝑛 ) )
38 37 sseq1d ( 𝑚 = 𝑛 → ( dom ( 𝐹𝑚 ) ⊆ 𝑆 ↔ dom ( 𝐹𝑛 ) ⊆ 𝑆 ) )
39 35 38 rspce ( ( 𝑛 ∈ ( ℤ𝑛 ) ∧ dom ( 𝐹𝑛 ) ⊆ 𝑆 ) → ∃ 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ 𝑆 )
40 26 30 39 syl2anc ( ( 𝜑𝑛𝑍 ) → ∃ 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ 𝑆 )
41 iinss ( ∃ 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ 𝑆 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ 𝑆 )
42 40 41 syl ( ( 𝜑𝑛𝑍 ) → 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ 𝑆 )
43 42 iunssd ( 𝜑 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ 𝑆 )
44 19 43 sstrd ( 𝜑𝐷 𝑆 )
45 nfv 𝑚 𝜑
46 nfcv 𝑚 𝑦
47 nfmpt1 𝑚 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
48 nfcv 𝑚 dom ⇝
49 47 48 nfel 𝑚 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝
50 nfcv 𝑚 𝑍
51 nfii1 𝑚 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
52 50 51 nfiun 𝑚 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
53 49 52 nfrabw 𝑚 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
54 7 53 nfcxfr 𝑚 𝐷
55 46 54 nfel 𝑚 𝑦𝐷
56 45 55 nfan 𝑚 ( 𝜑𝑦𝐷 )
57 nfcv 𝑤 𝐹
58 5 adantr ( ( 𝜑𝑚𝑍 ) → 𝑆 ∈ SAlg )
59 6 ffvelrnda ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) )
60 eqid dom ( 𝐹𝑚 ) = dom ( 𝐹𝑚 )
61 58 59 60 smff ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
62 61 adantlr ( ( ( 𝜑𝑦𝐷 ) ∧ 𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
63 nfcv 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
64 nfv 𝑦 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝
65 nfcv 𝑥 𝑦
66 13 65 nffv 𝑥 ( ( 𝐹𝑚 ) ‘ 𝑦 )
67 10 66 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
68 67 nfel1 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝
69 fveq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
70 69 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
71 70 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) )
72 16 63 64 68 71 cbvrabw { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
73 nfcv 𝑙 dom ( 𝐹𝑚 )
74 nfcv 𝑚 𝑙
75 1 74 nffv 𝑚 ( 𝐹𝑙 )
76 75 nfdm 𝑚 dom ( 𝐹𝑙 )
77 fveq2 ( 𝑚 = 𝑙 → ( 𝐹𝑚 ) = ( 𝐹𝑙 ) )
78 77 dmeqd ( 𝑚 = 𝑙 → dom ( 𝐹𝑚 ) = dom ( 𝐹𝑙 ) )
79 73 76 78 cbviin 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑙 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑙 )
80 79 a1i ( 𝑛 = 𝑖 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑙 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑙 ) )
81 fveq2 ( 𝑛 = 𝑖 → ( ℤ𝑛 ) = ( ℤ𝑖 ) )
82 eqidd ( ( 𝑛 = 𝑖𝑙 ∈ ( ℤ𝑖 ) ) → dom ( 𝐹𝑙 ) = dom ( 𝐹𝑙 ) )
83 81 82 iineq12dv ( 𝑛 = 𝑖 𝑙 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑙 ) = 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) )
84 80 83 eqtrd ( 𝑛 = 𝑖 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) )
85 84 cbviunv 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 )
86 85 eleq2i ( 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ↔ 𝑦 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) )
87 nfcv 𝑙 𝑍
88 nfcv 𝑙 ( ( 𝐹𝑚 ) ‘ 𝑦 )
89 75 46 nffv 𝑚 ( ( 𝐹𝑙 ) ‘ 𝑦 )
90 77 fveq1d ( 𝑚 = 𝑙 → ( ( 𝐹𝑚 ) ‘ 𝑦 ) = ( ( 𝐹𝑙 ) ‘ 𝑦 ) )
91 50 87 88 89 90 cbvmptf ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) )
92 91 eleq1i ( ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ )
93 86 92 anbi12i ( ( 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ↔ ( 𝑦 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∧ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) )
94 93 rabbia2 { 𝑦 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } = { 𝑦 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∣ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
95 7 72 94 3eqtri 𝐷 = { 𝑦 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∣ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ }
96 fveq2 ( 𝑦 = 𝑤 → ( ( 𝐹𝑙 ) ‘ 𝑦 ) = ( ( 𝐹𝑙 ) ‘ 𝑤 ) )
97 96 mpteq2dv ( 𝑦 = 𝑤 → ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) = ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) )
98 97 eleq1d ( 𝑦 = 𝑤 → ( ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) )
99 98 cbvrabv { 𝑦 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∣ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ } = { 𝑤 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∣ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) ∈ dom ⇝ }
100 fveq2 ( 𝑙 = 𝑚 → ( 𝐹𝑙 ) = ( 𝐹𝑚 ) )
101 100 dmeqd ( 𝑙 = 𝑚 → dom ( 𝐹𝑙 ) = dom ( 𝐹𝑚 ) )
102 76 73 101 cbviin 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) = 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 )
103 102 a1i ( 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) = 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) )
104 103 iuneq2i 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) = 𝑖𝑍 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 )
105 104 eleq2i ( 𝑤 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ↔ 𝑤 𝑖𝑍 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) )
106 nfcv 𝑚 𝑤
107 75 106 nffv 𝑚 ( ( 𝐹𝑙 ) ‘ 𝑤 )
108 nfcv 𝑙 ( ( 𝐹𝑚 ) ‘ 𝑤 )
109 100 fveq1d ( 𝑙 = 𝑚 → ( ( 𝐹𝑙 ) ‘ 𝑤 ) = ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
110 87 50 107 108 109 cbvmptf ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
111 110 eleq1i ( ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) ∈ dom ⇝ ↔ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) ∈ dom ⇝ )
112 105 111 anbi12i ( ( 𝑤 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∧ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) ↔ ( 𝑤 𝑖𝑍 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) ∧ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) )
113 112 rabbia2 { 𝑤 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∣ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑤 ) ) ∈ dom ⇝ } = { 𝑤 𝑖𝑍 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) ∈ dom ⇝ }
114 99 113 eqtri { 𝑦 𝑖𝑍 𝑙 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑙 ) ∣ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ∈ dom ⇝ } = { 𝑤 𝑖𝑍 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) ∈ dom ⇝ }
115 95 114 eqtri 𝐷 = { 𝑤 𝑖𝑍 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) ∈ dom ⇝ }
116 simpr ( ( 𝜑𝑦𝐷 ) → 𝑦𝐷 )
117 56 1 57 4 62 115 116 fnlimfvre ( ( 𝜑𝑦𝐷 ) → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ) ∈ ℝ )
118 nfrab1 𝑥 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
119 7 118 nfcxfr 𝑥 𝐷
120 nfcv 𝑦 𝐷
121 nfcv 𝑦 ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
122 nfcv 𝑥
123 122 67 nffv 𝑥 ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
124 70 fveq2d ( 𝑥 = 𝑦 → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ) )
125 119 120 121 123 124 cbvmptf ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ) )
126 8 125 eqtri 𝐺 = ( 𝑦𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) ) )
127 117 126 fmptd ( 𝜑𝐺 : 𝐷 ⟶ ℝ )
128 3 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑀 ∈ ℤ )
129 5 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg )
130 6 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
131 nfcv 𝑥 𝑙
132 2 131 nffv 𝑥 ( 𝐹𝑙 )
133 132 65 nffv 𝑥 ( ( 𝐹𝑙 ) ‘ 𝑦 )
134 10 133 nfmpt 𝑥 ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) )
135 122 134 nffv 𝑥 ( ⇝ ‘ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) )
136 nfcv 𝑙 ( ( 𝐹𝑚 ) ‘ 𝑥 )
137 nfcv 𝑚 𝑥
138 75 137 nffv 𝑚 ( ( 𝐹𝑙 ) ‘ 𝑥 )
139 77 fveq1d ( 𝑚 = 𝑙 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑙 ) ‘ 𝑥 ) )
140 50 87 136 138 139 cbvmptf ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑥 ) )
141 140 a1i ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑥 ) ) )
142 simpl ( ( 𝑥 = 𝑦𝑙𝑍 ) → 𝑥 = 𝑦 )
143 142 fveq2d ( ( 𝑥 = 𝑦𝑙𝑍 ) → ( ( 𝐹𝑙 ) ‘ 𝑥 ) = ( ( 𝐹𝑙 ) ‘ 𝑦 ) )
144 143 mpteq2dva ( 𝑥 = 𝑦 → ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑥 ) ) = ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) )
145 141 144 eqtrd ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) )
146 145 fveq2d ( 𝑥 = 𝑦 → ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ) )
147 119 120 121 135 146 cbvmptf ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦𝐷 ↦ ( ⇝ ‘ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ) )
148 8 147 eqtri 𝐺 = ( 𝑦𝐷 ↦ ( ⇝ ‘ ( 𝑙𝑍 ↦ ( ( 𝐹𝑙 ) ‘ 𝑦 ) ) ) )
149 simpr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ )
150 nfcv 𝑚 <
151 nfcv 𝑚 ( 𝑎 + ( 1 / 𝑗 ) )
152 89 150 151 nfbr 𝑚 ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) )
153 152 76 nfrabw 𝑚 { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) }
154 nfcv 𝑚 𝑡
155 154 76 nfin 𝑚 ( 𝑡 ∩ dom ( 𝐹𝑙 ) )
156 153 155 nfeq 𝑚 { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) )
157 nfcv 𝑚 𝑆
158 156 157 nfrabw 𝑚 { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) }
159 nfcv 𝑘 { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) }
160 nfcv 𝑙 { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) }
161 nfcv 𝑗 { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) }
162 nfcv 𝑦 dom ( 𝐹𝑙 )
163 132 nfdm 𝑥 dom ( 𝐹𝑙 )
164 nfcv 𝑥 <
165 nfcv 𝑥 ( 𝑎 + ( 1 / 𝑗 ) )
166 133 164 165 nfbr 𝑥 ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) )
167 nfv 𝑦 ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) )
168 fveq2 ( 𝑦 = 𝑥 → ( ( 𝐹𝑙 ) ‘ 𝑦 ) = ( ( 𝐹𝑙 ) ‘ 𝑥 ) )
169 168 breq1d ( 𝑦 = 𝑥 → ( ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ↔ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ) )
170 162 163 166 167 169 cbvrabw { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) }
171 170 a1i ( 𝑡 = 𝑠 → { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } )
172 ineq1 ( 𝑡 = 𝑠 → ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) = ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) )
173 171 172 eqeq12d ( 𝑡 = 𝑠 → ( { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) ↔ { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) ) )
174 173 cbvrabv { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) }
175 174 a1i ( 𝑙 = 𝑚 → { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) } )
176 101 eleq2d ( 𝑙 = 𝑚 → ( 𝑥 ∈ dom ( 𝐹𝑙 ) ↔ 𝑥 ∈ dom ( 𝐹𝑚 ) ) )
177 100 fveq1d ( 𝑙 = 𝑚 → ( ( 𝐹𝑙 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
178 177 breq1d ( 𝑙 = 𝑚 → ( ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ↔ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ) )
179 176 178 anbi12d ( 𝑙 = 𝑚 → ( ( 𝑥 ∈ dom ( 𝐹𝑙 ) ∧ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ) ↔ ( 𝑥 ∈ dom ( 𝐹𝑚 ) ∧ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ) ) )
180 179 rabbidva2 ( 𝑙 = 𝑚 → { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } )
181 101 ineq2d ( 𝑙 = 𝑚 → ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) )
182 180 181 eqeq12d ( 𝑙 = 𝑚 → ( { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) ↔ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) ) )
183 182 rabbidv ( 𝑙 = 𝑚 → { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑙 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
184 175 183 eqtrd ( 𝑙 = 𝑚 → { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
185 oveq2 ( 𝑗 = 𝑘 → ( 1 / 𝑗 ) = ( 1 / 𝑘 ) )
186 185 oveq2d ( 𝑗 = 𝑘 → ( 𝑎 + ( 1 / 𝑗 ) ) = ( 𝑎 + ( 1 / 𝑘 ) ) )
187 186 breq2d ( 𝑗 = 𝑘 → ( ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) ↔ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) ) )
188 187 rabbidv ( 𝑗 = 𝑘 → { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } )
189 188 eqeq1d ( 𝑗 = 𝑘 → ( { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) ↔ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) ) )
190 189 rabbidv ( 𝑗 = 𝑘 → { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
191 184 190 sylan9eq ( ( 𝑙 = 𝑚𝑗 = 𝑘 ) → { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
192 158 159 160 161 191 cbvmpo ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) } ) = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
193 192 eqcomi ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝑎 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ) = ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ { 𝑡𝑆 ∣ { 𝑦 ∈ dom ( 𝐹𝑙 ) ∣ ( ( 𝐹𝑙 ) ‘ 𝑦 ) < ( 𝑎 + ( 1 / 𝑗 ) ) } = ( 𝑡 ∩ dom ( 𝐹𝑙 ) ) } )
194 128 4 129 130 95 148 149 193 smflimlem6 ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐺𝑦 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
195 9 5 44 127 194 issmfled ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )