Step |
Hyp |
Ref |
Expression |
1 |
|
smflim.n |
|- F/_ m F |
2 |
|
smflim.x |
|- F/_ x F |
3 |
|
smflim.m |
|- ( ph -> M e. ZZ ) |
4 |
|
smflim.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
smflim.s |
|- ( ph -> S e. SAlg ) |
6 |
|
smflim.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
7 |
|
smflim.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
8 |
|
smflim.g |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
9 |
|
nfv |
|- F/ a ph |
10 |
|
nfcv |
|- F/_ x Z |
11 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
12 |
|
nfcv |
|- F/_ x m |
13 |
2 12
|
nffv |
|- F/_ x ( F ` m ) |
14 |
13
|
nfdm |
|- F/_ x dom ( F ` m ) |
15 |
11 14
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
16 |
10 15
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
17 |
16
|
ssrab2f |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
18 |
7 17
|
eqsstri |
|- D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
19 |
18
|
a1i |
|- ( ph -> D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
20 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
21 |
4
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` M ) ) |
22 |
21
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` M ) ) |
23 |
20 22
|
sselid |
|- ( n e. Z -> n e. ZZ ) |
24 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
25 |
23 24
|
syl |
|- ( n e. Z -> n e. ( ZZ>= ` n ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` n ) ) |
27 |
5
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
28 |
6
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
29 |
|
eqid |
|- dom ( F ` n ) = dom ( F ` n ) |
30 |
27 28 29
|
smfdmss |
|- ( ( ph /\ n e. Z ) -> dom ( F ` n ) C_ U. S ) |
31 |
|
nfcv |
|- F/_ m n |
32 |
1 31
|
nffv |
|- F/_ m ( F ` n ) |
33 |
32
|
nfdm |
|- F/_ m dom ( F ` n ) |
34 |
|
nfcv |
|- F/_ m U. S |
35 |
33 34
|
nfss |
|- F/ m dom ( F ` n ) C_ U. S |
36 |
|
fveq2 |
|- ( m = n -> ( F ` m ) = ( F ` n ) ) |
37 |
36
|
dmeqd |
|- ( m = n -> dom ( F ` m ) = dom ( F ` n ) ) |
38 |
37
|
sseq1d |
|- ( m = n -> ( dom ( F ` m ) C_ U. S <-> dom ( F ` n ) C_ U. S ) ) |
39 |
35 38
|
rspce |
|- ( ( n e. ( ZZ>= ` n ) /\ dom ( F ` n ) C_ U. S ) -> E. m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
40 |
26 30 39
|
syl2anc |
|- ( ( ph /\ n e. Z ) -> E. m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
41 |
|
iinss |
|- ( E. m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
42 |
40 41
|
syl |
|- ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
43 |
42
|
iunssd |
|- ( ph -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
44 |
19 43
|
sstrd |
|- ( ph -> D C_ U. S ) |
45 |
|
nfv |
|- F/ m ph |
46 |
|
nfcv |
|- F/_ m y |
47 |
|
nfmpt1 |
|- F/_ m ( m e. Z |-> ( ( F ` m ) ` x ) ) |
48 |
|
nfcv |
|- F/_ m dom ~~> |
49 |
47 48
|
nfel |
|- F/ m ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
50 |
|
nfcv |
|- F/_ m Z |
51 |
|
nfii1 |
|- F/_ m |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
52 |
50 51
|
nfiun |
|- F/_ m U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
53 |
49 52
|
nfrabw |
|- F/_ m { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
54 |
7 53
|
nfcxfr |
|- F/_ m D |
55 |
46 54
|
nfel |
|- F/ m y e. D |
56 |
45 55
|
nfan |
|- F/ m ( ph /\ y e. D ) |
57 |
|
nfcv |
|- F/_ w F |
58 |
5
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
59 |
6
|
ffvelrnda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
60 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
61 |
58 59 60
|
smff |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
62 |
61
|
adantlr |
|- ( ( ( ph /\ y e. D ) /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
63 |
|
nfcv |
|- F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
64 |
|
nfv |
|- F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
65 |
|
nfcv |
|- F/_ x y |
66 |
13 65
|
nffv |
|- F/_ x ( ( F ` m ) ` y ) |
67 |
10 66
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) |
68 |
67
|
nfel1 |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> |
69 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
70 |
69
|
mpteq2dv |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
71 |
70
|
eleq1d |
|- ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) |
72 |
16 63 64 68 71
|
cbvrabw |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
73 |
|
nfcv |
|- F/_ l dom ( F ` m ) |
74 |
|
nfcv |
|- F/_ m l |
75 |
1 74
|
nffv |
|- F/_ m ( F ` l ) |
76 |
75
|
nfdm |
|- F/_ m dom ( F ` l ) |
77 |
|
fveq2 |
|- ( m = l -> ( F ` m ) = ( F ` l ) ) |
78 |
77
|
dmeqd |
|- ( m = l -> dom ( F ` m ) = dom ( F ` l ) ) |
79 |
73 76 78
|
cbviin |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) |
80 |
79
|
a1i |
|- ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) ) |
81 |
|
fveq2 |
|- ( n = i -> ( ZZ>= ` n ) = ( ZZ>= ` i ) ) |
82 |
|
eqidd |
|- ( ( n = i /\ l e. ( ZZ>= ` i ) ) -> dom ( F ` l ) = dom ( F ` l ) ) |
83 |
81 82
|
iineq12dv |
|- ( n = i -> |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) ) |
84 |
80 83
|
eqtrd |
|- ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) ) |
85 |
84
|
cbviunv |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) |
86 |
85
|
eleq2i |
|- ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) ) |
87 |
|
nfcv |
|- F/_ l Z |
88 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` y ) |
89 |
75 46
|
nffv |
|- F/_ m ( ( F ` l ) ` y ) |
90 |
77
|
fveq1d |
|- ( m = l -> ( ( F ` m ) ` y ) = ( ( F ` l ) ` y ) ) |
91 |
50 87 88 89 90
|
cbvmptf |
|- ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( l e. Z |-> ( ( F ` l ) ` y ) ) |
92 |
91
|
eleq1i |
|- ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> ) |
93 |
86 92
|
anbi12i |
|- ( ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) <-> ( y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) /\ ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> ) ) |
94 |
93
|
rabbia2 |
|- { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } = { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } |
95 |
7 72 94
|
3eqtri |
|- D = { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } |
96 |
|
fveq2 |
|- ( y = w -> ( ( F ` l ) ` y ) = ( ( F ` l ) ` w ) ) |
97 |
96
|
mpteq2dv |
|- ( y = w -> ( l e. Z |-> ( ( F ` l ) ` y ) ) = ( l e. Z |-> ( ( F ` l ) ` w ) ) ) |
98 |
97
|
eleq1d |
|- ( y = w -> ( ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> <-> ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> ) ) |
99 |
98
|
cbvrabv |
|- { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } = { w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> } |
100 |
|
fveq2 |
|- ( l = m -> ( F ` l ) = ( F ` m ) ) |
101 |
100
|
dmeqd |
|- ( l = m -> dom ( F ` l ) = dom ( F ` m ) ) |
102 |
76 73 101
|
cbviin |
|- |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) = |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) |
103 |
102
|
a1i |
|- ( i e. Z -> |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) = |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) ) |
104 |
103
|
iuneq2i |
|- U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) = U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) |
105 |
104
|
eleq2i |
|- ( w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) <-> w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) ) |
106 |
|
nfcv |
|- F/_ m w |
107 |
75 106
|
nffv |
|- F/_ m ( ( F ` l ) ` w ) |
108 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` w ) |
109 |
100
|
fveq1d |
|- ( l = m -> ( ( F ` l ) ` w ) = ( ( F ` m ) ` w ) ) |
110 |
87 50 107 108 109
|
cbvmptf |
|- ( l e. Z |-> ( ( F ` l ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) |
111 |
110
|
eleq1i |
|- ( ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> ) |
112 |
105 111
|
anbi12i |
|- ( ( w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) /\ ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> ) <-> ( w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> ) ) |
113 |
112
|
rabbia2 |
|- { w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> } = { w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> } |
114 |
99 113
|
eqtri |
|- { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } = { w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> } |
115 |
95 114
|
eqtri |
|- D = { w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> } |
116 |
|
simpr |
|- ( ( ph /\ y e. D ) -> y e. D ) |
117 |
56 1 57 4 62 115 116
|
fnlimfvre |
|- ( ( ph /\ y e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) e. RR ) |
118 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
119 |
7 118
|
nfcxfr |
|- F/_ x D |
120 |
|
nfcv |
|- F/_ y D |
121 |
|
nfcv |
|- F/_ y ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
122 |
|
nfcv |
|- F/_ x ~~> |
123 |
122 67
|
nffv |
|- F/_ x ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
124 |
70
|
fveq2d |
|- ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) |
125 |
119 120 121 123 124
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) |
126 |
8 125
|
eqtri |
|- G = ( y e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) |
127 |
117 126
|
fmptd |
|- ( ph -> G : D --> RR ) |
128 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> M e. ZZ ) |
129 |
5
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
130 |
6
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : Z --> ( SMblFn ` S ) ) |
131 |
|
nfcv |
|- F/_ x l |
132 |
2 131
|
nffv |
|- F/_ x ( F ` l ) |
133 |
132 65
|
nffv |
|- F/_ x ( ( F ` l ) ` y ) |
134 |
10 133
|
nfmpt |
|- F/_ x ( l e. Z |-> ( ( F ` l ) ` y ) ) |
135 |
122 134
|
nffv |
|- F/_ x ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) |
136 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` x ) |
137 |
|
nfcv |
|- F/_ m x |
138 |
75 137
|
nffv |
|- F/_ m ( ( F ` l ) ` x ) |
139 |
77
|
fveq1d |
|- ( m = l -> ( ( F ` m ) ` x ) = ( ( F ` l ) ` x ) ) |
140 |
50 87 136 138 139
|
cbvmptf |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` x ) ) |
141 |
140
|
a1i |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` x ) ) ) |
142 |
|
simpl |
|- ( ( x = y /\ l e. Z ) -> x = y ) |
143 |
142
|
fveq2d |
|- ( ( x = y /\ l e. Z ) -> ( ( F ` l ) ` x ) = ( ( F ` l ) ` y ) ) |
144 |
143
|
mpteq2dva |
|- ( x = y -> ( l e. Z |-> ( ( F ` l ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` y ) ) ) |
145 |
141 144
|
eqtrd |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` y ) ) ) |
146 |
145
|
fveq2d |
|- ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) ) |
147 |
119 120 121 135 146
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) ) |
148 |
8 147
|
eqtri |
|- G = ( y e. D |-> ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) ) |
149 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
150 |
|
nfcv |
|- F/_ m < |
151 |
|
nfcv |
|- F/_ m ( a + ( 1 / j ) ) |
152 |
89 150 151
|
nfbr |
|- F/ m ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) |
153 |
152 76
|
nfrabw |
|- F/_ m { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } |
154 |
|
nfcv |
|- F/_ m t |
155 |
154 76
|
nfin |
|- F/_ m ( t i^i dom ( F ` l ) ) |
156 |
153 155
|
nfeq |
|- F/ m { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) |
157 |
|
nfcv |
|- F/_ m S |
158 |
156 157
|
nfrabw |
|- F/_ m { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } |
159 |
|
nfcv |
|- F/_ k { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } |
160 |
|
nfcv |
|- F/_ l { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
161 |
|
nfcv |
|- F/_ j { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
162 |
|
nfcv |
|- F/_ y dom ( F ` l ) |
163 |
132
|
nfdm |
|- F/_ x dom ( F ` l ) |
164 |
|
nfcv |
|- F/_ x < |
165 |
|
nfcv |
|- F/_ x ( a + ( 1 / j ) ) |
166 |
133 164 165
|
nfbr |
|- F/ x ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) |
167 |
|
nfv |
|- F/ y ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) |
168 |
|
fveq2 |
|- ( y = x -> ( ( F ` l ) ` y ) = ( ( F ` l ) ` x ) ) |
169 |
168
|
breq1d |
|- ( y = x -> ( ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) <-> ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) ) ) |
170 |
162 163 166 167 169
|
cbvrabw |
|- { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } |
171 |
170
|
a1i |
|- ( t = s -> { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } ) |
172 |
|
ineq1 |
|- ( t = s -> ( t i^i dom ( F ` l ) ) = ( s i^i dom ( F ` l ) ) ) |
173 |
171 172
|
eqeq12d |
|- ( t = s -> ( { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) <-> { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) ) ) |
174 |
173
|
cbvrabv |
|- { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) } |
175 |
174
|
a1i |
|- ( l = m -> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) } ) |
176 |
101
|
eleq2d |
|- ( l = m -> ( x e. dom ( F ` l ) <-> x e. dom ( F ` m ) ) ) |
177 |
100
|
fveq1d |
|- ( l = m -> ( ( F ` l ) ` x ) = ( ( F ` m ) ` x ) ) |
178 |
177
|
breq1d |
|- ( l = m -> ( ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) <-> ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) ) ) |
179 |
176 178
|
anbi12d |
|- ( l = m -> ( ( x e. dom ( F ` l ) /\ ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) ) <-> ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) ) ) ) |
180 |
179
|
rabbidva2 |
|- ( l = m -> { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } ) |
181 |
101
|
ineq2d |
|- ( l = m -> ( s i^i dom ( F ` l ) ) = ( s i^i dom ( F ` m ) ) ) |
182 |
180 181
|
eqeq12d |
|- ( l = m -> ( { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) <-> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
183 |
182
|
rabbidv |
|- ( l = m -> { s e. S | { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
184 |
175 183
|
eqtrd |
|- ( l = m -> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
185 |
|
oveq2 |
|- ( j = k -> ( 1 / j ) = ( 1 / k ) ) |
186 |
185
|
oveq2d |
|- ( j = k -> ( a + ( 1 / j ) ) = ( a + ( 1 / k ) ) ) |
187 |
186
|
breq2d |
|- ( j = k -> ( ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) <-> ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) ) ) |
188 |
187
|
rabbidv |
|- ( j = k -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } ) |
189 |
188
|
eqeq1d |
|- ( j = k -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) <-> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
190 |
189
|
rabbidv |
|- ( j = k -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
191 |
184 190
|
sylan9eq |
|- ( ( l = m /\ j = k ) -> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
192 |
158 159 160 161 191
|
cbvmpo |
|- ( l e. Z , j e. NN |-> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } ) = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
193 |
192
|
eqcomi |
|- ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) = ( l e. Z , j e. NN |-> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } ) |
194 |
128 4 129 130 95 148 149 193
|
smflimlem6 |
|- ( ( ph /\ a e. RR ) -> { y e. D | ( G ` y ) <_ a } e. ( S |`t D ) ) |
195 |
9 5 44 127 194
|
issmfled |
|- ( ph -> G e. ( SMblFn ` S ) ) |