| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflim.n |
|- F/_ m F |
| 2 |
|
smflim.x |
|- F/_ x F |
| 3 |
|
smflim.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
smflim.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
smflim.s |
|- ( ph -> S e. SAlg ) |
| 6 |
|
smflim.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 7 |
|
smflim.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 8 |
|
smflim.g |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 9 |
|
nfv |
|- F/ a ph |
| 10 |
|
nfcv |
|- F/_ x Z |
| 11 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
| 12 |
|
nfcv |
|- F/_ x m |
| 13 |
2 12
|
nffv |
|- F/_ x ( F ` m ) |
| 14 |
13
|
nfdm |
|- F/_ x dom ( F ` m ) |
| 15 |
11 14
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 16 |
10 15
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 17 |
16
|
ssrab2f |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 18 |
7 17
|
eqsstri |
|- D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 19 |
18
|
a1i |
|- ( ph -> D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 20 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 21 |
4
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` M ) ) |
| 22 |
21
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` M ) ) |
| 23 |
20 22
|
sselid |
|- ( n e. Z -> n e. ZZ ) |
| 24 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
| 25 |
23 24
|
syl |
|- ( n e. Z -> n e. ( ZZ>= ` n ) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` n ) ) |
| 27 |
5
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
| 28 |
6
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
| 29 |
|
eqid |
|- dom ( F ` n ) = dom ( F ` n ) |
| 30 |
27 28 29
|
smfdmss |
|- ( ( ph /\ n e. Z ) -> dom ( F ` n ) C_ U. S ) |
| 31 |
|
nfcv |
|- F/_ m n |
| 32 |
1 31
|
nffv |
|- F/_ m ( F ` n ) |
| 33 |
32
|
nfdm |
|- F/_ m dom ( F ` n ) |
| 34 |
|
nfcv |
|- F/_ m U. S |
| 35 |
33 34
|
nfss |
|- F/ m dom ( F ` n ) C_ U. S |
| 36 |
|
fveq2 |
|- ( m = n -> ( F ` m ) = ( F ` n ) ) |
| 37 |
36
|
dmeqd |
|- ( m = n -> dom ( F ` m ) = dom ( F ` n ) ) |
| 38 |
37
|
sseq1d |
|- ( m = n -> ( dom ( F ` m ) C_ U. S <-> dom ( F ` n ) C_ U. S ) ) |
| 39 |
35 38
|
rspce |
|- ( ( n e. ( ZZ>= ` n ) /\ dom ( F ` n ) C_ U. S ) -> E. m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
| 40 |
26 30 39
|
syl2anc |
|- ( ( ph /\ n e. Z ) -> E. m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
| 41 |
|
iinss |
|- ( E. m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
| 42 |
40 41
|
syl |
|- ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
| 43 |
42
|
iunssd |
|- ( ph -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ U. S ) |
| 44 |
19 43
|
sstrd |
|- ( ph -> D C_ U. S ) |
| 45 |
|
nfv |
|- F/ m ph |
| 46 |
|
nfcv |
|- F/_ m y |
| 47 |
|
nfmpt1 |
|- F/_ m ( m e. Z |-> ( ( F ` m ) ` x ) ) |
| 48 |
|
nfcv |
|- F/_ m dom ~~> |
| 49 |
47 48
|
nfel |
|- F/ m ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
| 50 |
|
nfcv |
|- F/_ m Z |
| 51 |
|
nfii1 |
|- F/_ m |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 52 |
50 51
|
nfiun |
|- F/_ m U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 53 |
49 52
|
nfrabw |
|- F/_ m { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 54 |
7 53
|
nfcxfr |
|- F/_ m D |
| 55 |
46 54
|
nfel |
|- F/ m y e. D |
| 56 |
45 55
|
nfan |
|- F/ m ( ph /\ y e. D ) |
| 57 |
|
nfcv |
|- F/_ w F |
| 58 |
5
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
| 59 |
6
|
ffvelcdmda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 60 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
| 61 |
58 59 60
|
smff |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 62 |
61
|
adantlr |
|- ( ( ( ph /\ y e. D ) /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 63 |
|
nfcv |
|- F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 64 |
|
nfv |
|- F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
| 65 |
|
nfcv |
|- F/_ x y |
| 66 |
13 65
|
nffv |
|- F/_ x ( ( F ` m ) ` y ) |
| 67 |
10 66
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) |
| 68 |
67
|
nfel1 |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> |
| 69 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
| 70 |
69
|
mpteq2dv |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
| 71 |
70
|
eleq1d |
|- ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) |
| 72 |
16 63 64 68 71
|
cbvrabw |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
| 73 |
|
nfcv |
|- F/_ l dom ( F ` m ) |
| 74 |
|
nfcv |
|- F/_ m l |
| 75 |
1 74
|
nffv |
|- F/_ m ( F ` l ) |
| 76 |
75
|
nfdm |
|- F/_ m dom ( F ` l ) |
| 77 |
|
fveq2 |
|- ( m = l -> ( F ` m ) = ( F ` l ) ) |
| 78 |
77
|
dmeqd |
|- ( m = l -> dom ( F ` m ) = dom ( F ` l ) ) |
| 79 |
73 76 78
|
cbviin |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) |
| 80 |
79
|
a1i |
|- ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) ) |
| 81 |
|
fveq2 |
|- ( n = i -> ( ZZ>= ` n ) = ( ZZ>= ` i ) ) |
| 82 |
|
eqidd |
|- ( ( n = i /\ l e. ( ZZ>= ` i ) ) -> dom ( F ` l ) = dom ( F ` l ) ) |
| 83 |
81 82
|
iineq12dv |
|- ( n = i -> |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) ) |
| 84 |
80 83
|
eqtrd |
|- ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) ) |
| 85 |
84
|
cbviunv |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) |
| 86 |
85
|
eleq2i |
|- ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) ) |
| 87 |
|
nfcv |
|- F/_ l Z |
| 88 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` y ) |
| 89 |
75 46
|
nffv |
|- F/_ m ( ( F ` l ) ` y ) |
| 90 |
77
|
fveq1d |
|- ( m = l -> ( ( F ` m ) ` y ) = ( ( F ` l ) ` y ) ) |
| 91 |
50 87 88 89 90
|
cbvmptf |
|- ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( l e. Z |-> ( ( F ` l ) ` y ) ) |
| 92 |
91
|
eleq1i |
|- ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> ) |
| 93 |
86 92
|
anbi12i |
|- ( ( y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) <-> ( y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) /\ ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> ) ) |
| 94 |
93
|
rabbia2 |
|- { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } = { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } |
| 95 |
7 72 94
|
3eqtri |
|- D = { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } |
| 96 |
|
fveq2 |
|- ( y = w -> ( ( F ` l ) ` y ) = ( ( F ` l ) ` w ) ) |
| 97 |
96
|
mpteq2dv |
|- ( y = w -> ( l e. Z |-> ( ( F ` l ) ` y ) ) = ( l e. Z |-> ( ( F ` l ) ` w ) ) ) |
| 98 |
97
|
eleq1d |
|- ( y = w -> ( ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> <-> ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> ) ) |
| 99 |
98
|
cbvrabv |
|- { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } = { w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> } |
| 100 |
|
fveq2 |
|- ( l = m -> ( F ` l ) = ( F ` m ) ) |
| 101 |
100
|
dmeqd |
|- ( l = m -> dom ( F ` l ) = dom ( F ` m ) ) |
| 102 |
76 73 101
|
cbviin |
|- |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) = |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) |
| 103 |
102
|
a1i |
|- ( i e. Z -> |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) = |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) ) |
| 104 |
103
|
iuneq2i |
|- U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) = U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) |
| 105 |
104
|
eleq2i |
|- ( w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) <-> w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) ) |
| 106 |
|
nfcv |
|- F/_ m w |
| 107 |
75 106
|
nffv |
|- F/_ m ( ( F ` l ) ` w ) |
| 108 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` w ) |
| 109 |
100
|
fveq1d |
|- ( l = m -> ( ( F ` l ) ` w ) = ( ( F ` m ) ` w ) ) |
| 110 |
87 50 107 108 109
|
cbvmptf |
|- ( l e. Z |-> ( ( F ` l ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) |
| 111 |
110
|
eleq1i |
|- ( ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> ) |
| 112 |
105 111
|
anbi12i |
|- ( ( w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) /\ ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> ) <-> ( w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> ) ) |
| 113 |
112
|
rabbia2 |
|- { w e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` w ) ) e. dom ~~> } = { w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> } |
| 114 |
99 113
|
eqtri |
|- { y e. U_ i e. Z |^|_ l e. ( ZZ>= ` i ) dom ( F ` l ) | ( l e. Z |-> ( ( F ` l ) ` y ) ) e. dom ~~> } = { w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> } |
| 115 |
95 114
|
eqtri |
|- D = { w e. U_ i e. Z |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` w ) ) e. dom ~~> } |
| 116 |
|
simpr |
|- ( ( ph /\ y e. D ) -> y e. D ) |
| 117 |
56 1 57 4 62 115 116
|
fnlimfvre |
|- ( ( ph /\ y e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) e. RR ) |
| 118 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 119 |
7 118
|
nfcxfr |
|- F/_ x D |
| 120 |
|
nfcv |
|- F/_ y D |
| 121 |
|
nfcv |
|- F/_ y ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
| 122 |
|
nfcv |
|- F/_ x ~~> |
| 123 |
122 67
|
nffv |
|- F/_ x ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
| 124 |
70
|
fveq2d |
|- ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) |
| 125 |
119 120 121 123 124
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) |
| 126 |
8 125
|
eqtri |
|- G = ( y e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) |
| 127 |
117 126
|
fmptd |
|- ( ph -> G : D --> RR ) |
| 128 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> M e. ZZ ) |
| 129 |
5
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
| 130 |
6
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : Z --> ( SMblFn ` S ) ) |
| 131 |
|
nfcv |
|- F/_ x l |
| 132 |
2 131
|
nffv |
|- F/_ x ( F ` l ) |
| 133 |
132 65
|
nffv |
|- F/_ x ( ( F ` l ) ` y ) |
| 134 |
10 133
|
nfmpt |
|- F/_ x ( l e. Z |-> ( ( F ` l ) ` y ) ) |
| 135 |
122 134
|
nffv |
|- F/_ x ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) |
| 136 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` x ) |
| 137 |
|
nfcv |
|- F/_ m x |
| 138 |
75 137
|
nffv |
|- F/_ m ( ( F ` l ) ` x ) |
| 139 |
77
|
fveq1d |
|- ( m = l -> ( ( F ` m ) ` x ) = ( ( F ` l ) ` x ) ) |
| 140 |
50 87 136 138 139
|
cbvmptf |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` x ) ) |
| 141 |
140
|
a1i |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` x ) ) ) |
| 142 |
|
simpl |
|- ( ( x = y /\ l e. Z ) -> x = y ) |
| 143 |
142
|
fveq2d |
|- ( ( x = y /\ l e. Z ) -> ( ( F ` l ) ` x ) = ( ( F ` l ) ` y ) ) |
| 144 |
143
|
mpteq2dva |
|- ( x = y -> ( l e. Z |-> ( ( F ` l ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` y ) ) ) |
| 145 |
141 144
|
eqtrd |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( l e. Z |-> ( ( F ` l ) ` y ) ) ) |
| 146 |
145
|
fveq2d |
|- ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) ) |
| 147 |
119 120 121 135 146
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) ) |
| 148 |
8 147
|
eqtri |
|- G = ( y e. D |-> ( ~~> ` ( l e. Z |-> ( ( F ` l ) ` y ) ) ) ) |
| 149 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 150 |
|
nfcv |
|- F/_ m < |
| 151 |
|
nfcv |
|- F/_ m ( a + ( 1 / j ) ) |
| 152 |
89 150 151
|
nfbr |
|- F/ m ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) |
| 153 |
152 76
|
nfrabw |
|- F/_ m { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } |
| 154 |
|
nfcv |
|- F/_ m t |
| 155 |
154 76
|
nfin |
|- F/_ m ( t i^i dom ( F ` l ) ) |
| 156 |
153 155
|
nfeq |
|- F/ m { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) |
| 157 |
|
nfcv |
|- F/_ m S |
| 158 |
156 157
|
nfrabw |
|- F/_ m { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } |
| 159 |
|
nfcv |
|- F/_ k { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } |
| 160 |
|
nfcv |
|- F/_ l { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
| 161 |
|
nfcv |
|- F/_ j { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
| 162 |
|
nfcv |
|- F/_ y dom ( F ` l ) |
| 163 |
132
|
nfdm |
|- F/_ x dom ( F ` l ) |
| 164 |
|
nfcv |
|- F/_ x < |
| 165 |
|
nfcv |
|- F/_ x ( a + ( 1 / j ) ) |
| 166 |
133 164 165
|
nfbr |
|- F/ x ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) |
| 167 |
|
nfv |
|- F/ y ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) |
| 168 |
|
fveq2 |
|- ( y = x -> ( ( F ` l ) ` y ) = ( ( F ` l ) ` x ) ) |
| 169 |
168
|
breq1d |
|- ( y = x -> ( ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) <-> ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) ) ) |
| 170 |
162 163 166 167 169
|
cbvrabw |
|- { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } |
| 171 |
170
|
a1i |
|- ( t = s -> { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } ) |
| 172 |
|
ineq1 |
|- ( t = s -> ( t i^i dom ( F ` l ) ) = ( s i^i dom ( F ` l ) ) ) |
| 173 |
171 172
|
eqeq12d |
|- ( t = s -> ( { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) <-> { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) ) ) |
| 174 |
173
|
cbvrabv |
|- { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) } |
| 175 |
174
|
a1i |
|- ( l = m -> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) } ) |
| 176 |
101
|
eleq2d |
|- ( l = m -> ( x e. dom ( F ` l ) <-> x e. dom ( F ` m ) ) ) |
| 177 |
100
|
fveq1d |
|- ( l = m -> ( ( F ` l ) ` x ) = ( ( F ` m ) ` x ) ) |
| 178 |
177
|
breq1d |
|- ( l = m -> ( ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) <-> ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) ) ) |
| 179 |
176 178
|
anbi12d |
|- ( l = m -> ( ( x e. dom ( F ` l ) /\ ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) ) <-> ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) ) ) ) |
| 180 |
179
|
rabbidva2 |
|- ( l = m -> { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } ) |
| 181 |
101
|
ineq2d |
|- ( l = m -> ( s i^i dom ( F ` l ) ) = ( s i^i dom ( F ` m ) ) ) |
| 182 |
180 181
|
eqeq12d |
|- ( l = m -> ( { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) <-> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
| 183 |
182
|
rabbidv |
|- ( l = m -> { s e. S | { x e. dom ( F ` l ) | ( ( F ` l ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 184 |
175 183
|
eqtrd |
|- ( l = m -> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 185 |
|
oveq2 |
|- ( j = k -> ( 1 / j ) = ( 1 / k ) ) |
| 186 |
185
|
oveq2d |
|- ( j = k -> ( a + ( 1 / j ) ) = ( a + ( 1 / k ) ) ) |
| 187 |
186
|
breq2d |
|- ( j = k -> ( ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) <-> ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) ) ) |
| 188 |
187
|
rabbidv |
|- ( j = k -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } ) |
| 189 |
188
|
eqeq1d |
|- ( j = k -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) <-> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
| 190 |
189
|
rabbidv |
|- ( j = k -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 191 |
184 190
|
sylan9eq |
|- ( ( l = m /\ j = k ) -> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 192 |
158 159 160 161 191
|
cbvmpo |
|- ( l e. Z , j e. NN |-> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } ) = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 193 |
192
|
eqcomi |
|- ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( a + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) = ( l e. Z , j e. NN |-> { t e. S | { y e. dom ( F ` l ) | ( ( F ` l ) ` y ) < ( a + ( 1 / j ) ) } = ( t i^i dom ( F ` l ) ) } ) |
| 194 |
128 4 129 130 95 148 149 193
|
smflimlem6 |
|- ( ( ph /\ a e. RR ) -> { y e. D | ( G ` y ) <_ a } e. ( S |`t D ) ) |
| 195 |
9 5 44 127 194
|
issmfled |
|- ( ph -> G e. ( SMblFn ` S ) ) |