Metamath Proof Explorer


Theorem iineq12dv

Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypotheses iineq12dv.1
|- ( ph -> A = B )
iineq12dv.2
|- ( ( ph /\ x e. B ) -> C = D )
Assertion iineq12dv
|- ( ph -> |^|_ x e. A C = |^|_ x e. B D )

Proof

Step Hyp Ref Expression
1 iineq12dv.1
 |-  ( ph -> A = B )
2 iineq12dv.2
 |-  ( ( ph /\ x e. B ) -> C = D )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 imbi1d
 |-  ( ph -> ( ( x e. A -> t e. C ) <-> ( x e. B -> t e. C ) ) )
5 4 ralbidv2
 |-  ( ph -> ( A. x e. A t e. C <-> A. x e. B t e. C ) )
6 5 abbidv
 |-  ( ph -> { t | A. x e. A t e. C } = { t | A. x e. B t e. C } )
7 df-iin
 |-  |^|_ x e. A C = { t | A. x e. A t e. C }
8 df-iin
 |-  |^|_ x e. B C = { t | A. x e. B t e. C }
9 6 7 8 3eqtr4g
 |-  ( ph -> |^|_ x e. A C = |^|_ x e. B C )
10 2 iineq2dv
 |-  ( ph -> |^|_ x e. B C = |^|_ x e. B D )
11 9 10 eqtrd
 |-  ( ph -> |^|_ x e. A C = |^|_ x e. B D )