Metamath Proof Explorer


Theorem iineq12dv

Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypotheses iineq12dv.1 φ A = B
iineq12dv.2 φ x B C = D
Assertion iineq12dv φ x A C = x B D

Proof

Step Hyp Ref Expression
1 iineq12dv.1 φ A = B
2 iineq12dv.2 φ x B C = D
3 1 eleq2d φ x A x B
4 3 imbi1d φ x A t C x B t C
5 4 ralbidv2 φ x A t C x B t C
6 5 abbidv φ t | x A t C = t | x B t C
7 df-iin x A C = t | x A t C
8 df-iin x B C = t | x B t C
9 6 7 8 3eqtr4g φ x A C = x B C
10 2 iineq2dv φ x B C = x B D
11 9 10 eqtrd φ x A C = x B D