Step |
Hyp |
Ref |
Expression |
1 |
|
iineq12dv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
iineq12dv.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 𝐷 ) |
3 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
4 |
3
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝑡 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑡 ∈ 𝐶 ) ) ) |
5 |
4
|
ralbidv2 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ) ) |
6 |
5
|
abbidv |
⊢ ( 𝜑 → { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 } ) |
7 |
|
df-iin |
⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } |
8 |
|
df-iin |
⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 } |
9 |
6 7 8
|
3eqtr4g |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶 ) |
10 |
2
|
iineq2dv |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐵 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷 ) |
11 |
9 10
|
eqtrd |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷 ) |