Metamath Proof Explorer


Theorem iineq12dv

Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypotheses iineq12dv.1 ( 𝜑𝐴 = 𝐵 )
iineq12dv.2 ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
Assertion iineq12dv ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 iineq12dv.1 ( 𝜑𝐴 = 𝐵 )
2 iineq12dv.2 ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
3 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
4 3 imbi1d ( 𝜑 → ( ( 𝑥𝐴𝑡𝐶 ) ↔ ( 𝑥𝐵𝑡𝐶 ) ) )
5 4 ralbidv2 ( 𝜑 → ( ∀ 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑥𝐵 𝑡𝐶 ) )
6 5 abbidv ( 𝜑 → { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∀ 𝑥𝐵 𝑡𝐶 } )
7 df-iin 𝑥𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 }
8 df-iin 𝑥𝐵 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐵 𝑡𝐶 }
9 6 7 8 3eqtr4g ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )
10 2 iineq2dv ( 𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷 )
11 9 10 eqtrd ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )