| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimlem6.1 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smflimlem6.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smflimlem6.3 |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smflimlem6.4 |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smflimlem6.5 |  |-  D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } | 
						
							| 6 |  | smflimlem6.6 |  |-  G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 7 |  | smflimlem6.7 |  |-  ( ph -> A e. RR ) | 
						
							| 8 |  | smflimlem6.8 |  |-  P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 9 | 2 | fvexi |  |-  Z e. _V | 
						
							| 10 |  | nnex |  |-  NN e. _V | 
						
							| 11 | 9 10 | xpex |  |-  ( Z X. NN ) e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( Z X. NN ) e. _V ) | 
						
							| 13 |  | eqid |  |-  { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } | 
						
							| 14 | 13 3 | rabexd |  |-  ( ph -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) | 
						
							| 16 | 15 | ralrimivva |  |-  ( ph -> A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) | 
						
							| 17 | 8 | fnmpo |  |-  ( A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V -> P Fn ( Z X. NN ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> P Fn ( Z X. NN ) ) | 
						
							| 19 |  | fnrndomg |  |-  ( ( Z X. NN ) e. _V -> ( P Fn ( Z X. NN ) -> ran P ~<_ ( Z X. NN ) ) ) | 
						
							| 20 | 12 18 19 | sylc |  |-  ( ph -> ran P ~<_ ( Z X. NN ) ) | 
						
							| 21 | 2 | uzct |  |-  Z ~<_ _om | 
						
							| 22 |  | nnct |  |-  NN ~<_ _om | 
						
							| 23 | 21 22 | pm3.2i |  |-  ( Z ~<_ _om /\ NN ~<_ _om ) | 
						
							| 24 |  | xpct |  |-  ( ( Z ~<_ _om /\ NN ~<_ _om ) -> ( Z X. NN ) ~<_ _om ) | 
						
							| 25 | 23 24 | ax-mp |  |-  ( Z X. NN ) ~<_ _om | 
						
							| 26 | 25 | a1i |  |-  ( ph -> ( Z X. NN ) ~<_ _om ) | 
						
							| 27 |  | domtr |  |-  ( ( ran P ~<_ ( Z X. NN ) /\ ( Z X. NN ) ~<_ _om ) -> ran P ~<_ _om ) | 
						
							| 28 | 20 26 27 | syl2anc |  |-  ( ph -> ran P ~<_ _om ) | 
						
							| 29 |  | vex |  |-  y e. _V | 
						
							| 30 | 8 | elrnmpog |  |-  ( y e. _V -> ( y e. ran P <-> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) ) | 
						
							| 31 | 29 30 | ax-mp |  |-  ( y e. ran P <-> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 32 | 31 | biimpi |  |-  ( y e. ran P -> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ y e. ran P ) -> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 34 |  | simp3 |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) /\ y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) -> y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 35 | 3 | adantr |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> S e. SAlg ) | 
						
							| 36 | 4 | ffvelcdmda |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 37 | 36 | adantrr |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 38 |  | eqid |  |-  dom ( F ` m ) = dom ( F ` m ) | 
						
							| 39 | 7 | adantr |  |-  ( ( ph /\ k e. NN ) -> A e. RR ) | 
						
							| 40 |  | nnrecre |  |-  ( k e. NN -> ( 1 / k ) e. RR ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR ) | 
						
							| 42 | 39 41 | readdcld |  |-  ( ( ph /\ k e. NN ) -> ( A + ( 1 / k ) ) e. RR ) | 
						
							| 43 | 42 | adantrl |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> ( A + ( 1 / k ) ) e. RR ) | 
						
							| 44 | 35 37 38 43 | smfpreimalt |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) ) | 
						
							| 45 |  | fvex |  |-  ( F ` m ) e. _V | 
						
							| 46 | 45 | dmex |  |-  dom ( F ` m ) e. _V | 
						
							| 47 | 46 | a1i |  |-  ( ph -> dom ( F ` m ) e. _V ) | 
						
							| 48 |  | elrest |  |-  ( ( S e. SAlg /\ dom ( F ` m ) e. _V ) -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) | 
						
							| 49 | 3 47 48 | syl2anc |  |-  ( ph -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) | 
						
							| 51 | 44 50 | mpbid |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) | 
						
							| 52 |  | rabn0 |  |-  ( { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } =/= (/) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) | 
						
							| 53 | 51 52 | sylibr |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } =/= (/) ) | 
						
							| 54 | 53 | 3adant3 |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) /\ y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } =/= (/) ) | 
						
							| 55 | 34 54 | eqnetrd |  |-  ( ( ph /\ ( m e. Z /\ k e. NN ) /\ y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) -> y =/= (/) ) | 
						
							| 56 | 55 | 3exp |  |-  ( ph -> ( ( m e. Z /\ k e. NN ) -> ( y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) ) | 
						
							| 57 | 56 | rexlimdvv |  |-  ( ph -> ( E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ y e. ran P ) -> ( E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) | 
						
							| 59 | 33 58 | mpd |  |-  ( ( ph /\ y e. ran P ) -> y =/= (/) ) | 
						
							| 60 | 28 59 | axccd2 |  |-  ( ph -> E. c A. y e. ran P ( c ` y ) e. y ) | 
						
							| 61 | 1 | adantr |  |-  ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> M e. ZZ ) | 
						
							| 62 | 3 | adantr |  |-  ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> S e. SAlg ) | 
						
							| 63 | 4 | adantr |  |-  ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 64 | 7 | adantr |  |-  ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> A e. RR ) | 
						
							| 65 |  | fvoveq1 |  |-  ( l = m -> ( c ` ( l P j ) ) = ( c ` ( m P j ) ) ) | 
						
							| 66 |  | oveq2 |  |-  ( j = k -> ( m P j ) = ( m P k ) ) | 
						
							| 67 | 66 | fveq2d |  |-  ( j = k -> ( c ` ( m P j ) ) = ( c ` ( m P k ) ) ) | 
						
							| 68 | 65 67 | cbvmpov |  |-  ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) = ( m e. Z , k e. NN |-> ( c ` ( m P k ) ) ) | 
						
							| 69 |  | nfcv |  |-  F/_ k U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) | 
						
							| 70 |  | nfcv |  |-  F/_ j Z | 
						
							| 71 |  | nfcv |  |-  F/_ j ( ZZ>= ` n ) | 
						
							| 72 |  | nfcv |  |-  F/_ j m | 
						
							| 73 |  | nfmpo2 |  |-  F/_ j ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) | 
						
							| 74 |  | nfcv |  |-  F/_ j k | 
						
							| 75 | 72 73 74 | nfov |  |-  F/_ j ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) | 
						
							| 76 | 71 75 | nfiin |  |-  F/_ j |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) | 
						
							| 77 | 70 76 | nfiun |  |-  F/_ j U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) | 
						
							| 78 |  | oveq2 |  |-  ( j = k -> ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( j = k /\ i e. ( ZZ>= ` n ) ) -> ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 80 | 79 | iineq2dv |  |-  ( j = k -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 81 |  | oveq1 |  |-  ( i = m -> ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) = ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 82 | 81 | cbviinv |  |-  |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) | 
						
							| 83 | 82 | a1i |  |-  ( j = k -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 84 | 80 83 | eqtrd |  |-  ( j = k -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( j = k /\ n e. Z ) -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 86 | 85 | iuneq2dv |  |-  ( j = k -> U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) | 
						
							| 87 | 69 77 86 | cbviin |  |-  |^|_ j e. NN U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) | 
						
							| 88 |  | fveq2 |  |-  ( y = r -> ( c ` y ) = ( c ` r ) ) | 
						
							| 89 |  | id |  |-  ( y = r -> y = r ) | 
						
							| 90 | 88 89 | eleq12d |  |-  ( y = r -> ( ( c ` y ) e. y <-> ( c ` r ) e. r ) ) | 
						
							| 91 | 90 | rspccva |  |-  ( ( A. y e. ran P ( c ` y ) e. y /\ r e. ran P ) -> ( c ` r ) e. r ) | 
						
							| 92 | 91 | adantll |  |-  ( ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) /\ r e. ran P ) -> ( c ` r ) e. r ) | 
						
							| 93 | 61 2 62 63 5 6 64 8 68 87 92 | smflimlem5 |  |-  ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) | 
						
							| 94 | 93 | ex |  |-  ( ph -> ( A. y e. ran P ( c ` y ) e. y -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) ) | 
						
							| 95 | 94 | exlimdv |  |-  ( ph -> ( E. c A. y e. ran P ( c ` y ) e. y -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) ) | 
						
							| 96 | 60 95 | mpd |  |-  ( ph -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) |