| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimlem6.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
smflimlem6.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
smflimlem6.3 |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smflimlem6.4 |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 5 |
|
smflimlem6.5 |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 6 |
|
smflimlem6.6 |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 7 |
|
smflimlem6.7 |
|- ( ph -> A e. RR ) |
| 8 |
|
smflimlem6.8 |
|- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 9 |
2
|
fvexi |
|- Z e. _V |
| 10 |
|
nnex |
|- NN e. _V |
| 11 |
9 10
|
xpex |
|- ( Z X. NN ) e. _V |
| 12 |
11
|
a1i |
|- ( ph -> ( Z X. NN ) e. _V ) |
| 13 |
|
eqid |
|- { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
| 14 |
13 3
|
rabexd |
|- ( ph -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
| 16 |
15
|
ralrimivva |
|- ( ph -> A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
| 17 |
8
|
fnmpo |
|- ( A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V -> P Fn ( Z X. NN ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> P Fn ( Z X. NN ) ) |
| 19 |
|
fnrndomg |
|- ( ( Z X. NN ) e. _V -> ( P Fn ( Z X. NN ) -> ran P ~<_ ( Z X. NN ) ) ) |
| 20 |
12 18 19
|
sylc |
|- ( ph -> ran P ~<_ ( Z X. NN ) ) |
| 21 |
2
|
uzct |
|- Z ~<_ _om |
| 22 |
|
nnct |
|- NN ~<_ _om |
| 23 |
21 22
|
pm3.2i |
|- ( Z ~<_ _om /\ NN ~<_ _om ) |
| 24 |
|
xpct |
|- ( ( Z ~<_ _om /\ NN ~<_ _om ) -> ( Z X. NN ) ~<_ _om ) |
| 25 |
23 24
|
ax-mp |
|- ( Z X. NN ) ~<_ _om |
| 26 |
25
|
a1i |
|- ( ph -> ( Z X. NN ) ~<_ _om ) |
| 27 |
|
domtr |
|- ( ( ran P ~<_ ( Z X. NN ) /\ ( Z X. NN ) ~<_ _om ) -> ran P ~<_ _om ) |
| 28 |
20 26 27
|
syl2anc |
|- ( ph -> ran P ~<_ _om ) |
| 29 |
|
vex |
|- y e. _V |
| 30 |
8
|
elrnmpog |
|- ( y e. _V -> ( y e. ran P <-> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) ) |
| 31 |
29 30
|
ax-mp |
|- ( y e. ran P <-> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 32 |
31
|
biimpi |
|- ( y e. ran P -> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ y e. ran P ) -> E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 34 |
|
simp3 |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) /\ y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) -> y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 35 |
3
|
adantr |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> S e. SAlg ) |
| 36 |
4
|
ffvelcdmda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 37 |
36
|
adantrr |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 38 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
| 39 |
7
|
adantr |
|- ( ( ph /\ k e. NN ) -> A e. RR ) |
| 40 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 42 |
39 41
|
readdcld |
|- ( ( ph /\ k e. NN ) -> ( A + ( 1 / k ) ) e. RR ) |
| 43 |
42
|
adantrl |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> ( A + ( 1 / k ) ) e. RR ) |
| 44 |
35 37 38 43
|
smfpreimalt |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) ) |
| 45 |
|
fvex |
|- ( F ` m ) e. _V |
| 46 |
45
|
dmex |
|- dom ( F ` m ) e. _V |
| 47 |
46
|
a1i |
|- ( ph -> dom ( F ` m ) e. _V ) |
| 48 |
|
elrest |
|- ( ( S e. SAlg /\ dom ( F ` m ) e. _V ) -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
| 49 |
3 47 48
|
syl2anc |
|- ( ph -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } e. ( S |`t dom ( F ` m ) ) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
| 51 |
44 50
|
mpbid |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) |
| 52 |
|
rabn0 |
|- ( { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } =/= (/) <-> E. s e. S { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) ) |
| 53 |
51 52
|
sylibr |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } =/= (/) ) |
| 54 |
53
|
3adant3 |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) /\ y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } =/= (/) ) |
| 55 |
34 54
|
eqnetrd |
|- ( ( ph /\ ( m e. Z /\ k e. NN ) /\ y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) -> y =/= (/) ) |
| 56 |
55
|
3exp |
|- ( ph -> ( ( m e. Z /\ k e. NN ) -> ( y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) ) |
| 57 |
56
|
rexlimdvv |
|- ( ph -> ( E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ y e. ran P ) -> ( E. m e. Z E. k e. NN y = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) |
| 59 |
33 58
|
mpd |
|- ( ( ph /\ y e. ran P ) -> y =/= (/) ) |
| 60 |
28 59
|
axccd2 |
|- ( ph -> E. c A. y e. ran P ( c ` y ) e. y ) |
| 61 |
1
|
adantr |
|- ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> M e. ZZ ) |
| 62 |
3
|
adantr |
|- ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> S e. SAlg ) |
| 63 |
4
|
adantr |
|- ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> F : Z --> ( SMblFn ` S ) ) |
| 64 |
7
|
adantr |
|- ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> A e. RR ) |
| 65 |
|
fvoveq1 |
|- ( l = m -> ( c ` ( l P j ) ) = ( c ` ( m P j ) ) ) |
| 66 |
|
oveq2 |
|- ( j = k -> ( m P j ) = ( m P k ) ) |
| 67 |
66
|
fveq2d |
|- ( j = k -> ( c ` ( m P j ) ) = ( c ` ( m P k ) ) ) |
| 68 |
65 67
|
cbvmpov |
|- ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) = ( m e. Z , k e. NN |-> ( c ` ( m P k ) ) ) |
| 69 |
|
nfcv |
|- F/_ k U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) |
| 70 |
|
nfcv |
|- F/_ j Z |
| 71 |
|
nfcv |
|- F/_ j ( ZZ>= ` n ) |
| 72 |
|
nfcv |
|- F/_ j m |
| 73 |
|
nfmpo2 |
|- F/_ j ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) |
| 74 |
|
nfcv |
|- F/_ j k |
| 75 |
72 73 74
|
nfov |
|- F/_ j ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) |
| 76 |
71 75
|
nfiin |
|- F/_ j |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) |
| 77 |
70 76
|
nfiun |
|- F/_ j U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) |
| 78 |
|
oveq2 |
|- ( j = k -> ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 79 |
78
|
adantr |
|- ( ( j = k /\ i e. ( ZZ>= ` n ) ) -> ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 80 |
79
|
iineq2dv |
|- ( j = k -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 81 |
|
oveq1 |
|- ( i = m -> ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) = ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 82 |
81
|
cbviinv |
|- |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) |
| 83 |
82
|
a1i |
|- ( j = k -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 84 |
80 83
|
eqtrd |
|- ( j = k -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 85 |
84
|
adantr |
|- ( ( j = k /\ n e. Z ) -> |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 86 |
85
|
iuneq2dv |
|- ( j = k -> U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) ) |
| 87 |
69 77 86
|
cbviin |
|- |^|_ j e. NN U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) j ) = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m ( l e. Z , j e. NN |-> ( c ` ( l P j ) ) ) k ) |
| 88 |
|
fveq2 |
|- ( y = r -> ( c ` y ) = ( c ` r ) ) |
| 89 |
|
id |
|- ( y = r -> y = r ) |
| 90 |
88 89
|
eleq12d |
|- ( y = r -> ( ( c ` y ) e. y <-> ( c ` r ) e. r ) ) |
| 91 |
90
|
rspccva |
|- ( ( A. y e. ran P ( c ` y ) e. y /\ r e. ran P ) -> ( c ` r ) e. r ) |
| 92 |
91
|
adantll |
|- ( ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) /\ r e. ran P ) -> ( c ` r ) e. r ) |
| 93 |
61 2 62 63 5 6 64 8 68 87 92
|
smflimlem5 |
|- ( ( ph /\ A. y e. ran P ( c ` y ) e. y ) -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) |
| 94 |
93
|
ex |
|- ( ph -> ( A. y e. ran P ( c ` y ) e. y -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) ) |
| 95 |
94
|
exlimdv |
|- ( ph -> ( E. c A. y e. ran P ( c ` y ) e. y -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) ) |
| 96 |
60 95
|
mpd |
|- ( ph -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) |