Metamath Proof Explorer


Theorem smflimlem6

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem6.1 φ M
smflimlem6.2 Z = M
smflimlem6.3 φ S SAlg
smflimlem6.4 φ F : Z SMblFn S
smflimlem6.5 D = x n Z m n dom F m | m Z F m x dom
smflimlem6.6 G = x D m Z F m x
smflimlem6.7 φ A
smflimlem6.8 P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
Assertion smflimlem6 φ x D | G x A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smflimlem6.1 φ M
2 smflimlem6.2 Z = M
3 smflimlem6.3 φ S SAlg
4 smflimlem6.4 φ F : Z SMblFn S
5 smflimlem6.5 D = x n Z m n dom F m | m Z F m x dom
6 smflimlem6.6 G = x D m Z F m x
7 smflimlem6.7 φ A
8 smflimlem6.8 P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
9 2 fvexi Z V
10 nnex V
11 9 10 xpex Z × V
12 11 a1i φ Z × V
13 eqid s S | x dom F m | F m x < A + 1 k = s dom F m = s S | x dom F m | F m x < A + 1 k = s dom F m
14 13 3 rabexd φ s S | x dom F m | F m x < A + 1 k = s dom F m V
15 14 adantr φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
16 15 ralrimivva φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
17 8 fnmpo m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V P Fn Z ×
18 16 17 syl φ P Fn Z ×
19 fnrndomg Z × V P Fn Z × ran P Z ×
20 12 18 19 sylc φ ran P Z ×
21 2 uzct Z ω
22 nnct ω
23 21 22 pm3.2i Z ω ω
24 xpct Z ω ω Z × ω
25 23 24 ax-mp Z × ω
26 25 a1i φ Z × ω
27 domtr ran P Z × Z × ω ran P ω
28 20 26 27 syl2anc φ ran P ω
29 vex y V
30 8 elrnmpog y V y ran P m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m
31 29 30 ax-mp y ran P m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m
32 31 biimpi y ran P m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m
33 32 adantl φ y ran P m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m
34 simp3 φ m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m y = s S | x dom F m | F m x < A + 1 k = s dom F m
35 3 adantr φ m Z k S SAlg
36 4 ffvelrnda φ m Z F m SMblFn S
37 36 adantrr φ m Z k F m SMblFn S
38 eqid dom F m = dom F m
39 7 adantr φ k A
40 nnrecre k 1 k
41 40 adantl φ k 1 k
42 39 41 readdcld φ k A + 1 k
43 42 adantrl φ m Z k A + 1 k
44 35 37 38 43 smfpreimalt φ m Z k x dom F m | F m x < A + 1 k S 𝑡 dom F m
45 fvex F m V
46 45 dmex dom F m V
47 46 a1i φ dom F m V
48 elrest S SAlg dom F m V x dom F m | F m x < A + 1 k S 𝑡 dom F m s S x dom F m | F m x < A + 1 k = s dom F m
49 3 47 48 syl2anc φ x dom F m | F m x < A + 1 k S 𝑡 dom F m s S x dom F m | F m x < A + 1 k = s dom F m
50 49 adantr φ m Z k x dom F m | F m x < A + 1 k S 𝑡 dom F m s S x dom F m | F m x < A + 1 k = s dom F m
51 44 50 mpbid φ m Z k s S x dom F m | F m x < A + 1 k = s dom F m
52 rabn0 s S | x dom F m | F m x < A + 1 k = s dom F m s S x dom F m | F m x < A + 1 k = s dom F m
53 51 52 sylibr φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m
54 53 3adant3 φ m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m s S | x dom F m | F m x < A + 1 k = s dom F m
55 34 54 eqnetrd φ m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m y
56 55 3exp φ m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m y
57 56 rexlimdvv φ m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m y
58 57 adantr φ y ran P m Z k y = s S | x dom F m | F m x < A + 1 k = s dom F m y
59 33 58 mpd φ y ran P y
60 28 59 axccd2 φ c y ran P c y y
61 1 adantr φ y ran P c y y M
62 3 adantr φ y ran P c y y S SAlg
63 4 adantr φ y ran P c y y F : Z SMblFn S
64 7 adantr φ y ran P c y y A
65 fvoveq1 l = m c l P j = c m P j
66 oveq2 j = k m P j = m P k
67 66 fveq2d j = k c m P j = c m P k
68 65 67 cbvmpov l Z , j c l P j = m Z , k c m P k
69 nfcv _ k n Z i n i l Z , j c l P j j
70 nfcv _ j Z
71 nfcv _ j n
72 nfcv _ j m
73 nfmpo2 _ j l Z , j c l P j
74 nfcv _ j k
75 72 73 74 nfov _ j m l Z , j c l P j k
76 71 75 nfiin _ j m n m l Z , j c l P j k
77 70 76 nfiun _ j n Z m n m l Z , j c l P j k
78 oveq2 j = k i l Z , j c l P j j = i l Z , j c l P j k
79 78 adantr j = k i n i l Z , j c l P j j = i l Z , j c l P j k
80 79 iineq2dv j = k i n i l Z , j c l P j j = i n i l Z , j c l P j k
81 oveq1 i = m i l Z , j c l P j k = m l Z , j c l P j k
82 81 cbviinv i n i l Z , j c l P j k = m n m l Z , j c l P j k
83 82 a1i j = k i n i l Z , j c l P j k = m n m l Z , j c l P j k
84 80 83 eqtrd j = k i n i l Z , j c l P j j = m n m l Z , j c l P j k
85 84 adantr j = k n Z i n i l Z , j c l P j j = m n m l Z , j c l P j k
86 85 iuneq2dv j = k n Z i n i l Z , j c l P j j = n Z m n m l Z , j c l P j k
87 69 77 86 cbviin j n Z i n i l Z , j c l P j j = k n Z m n m l Z , j c l P j k
88 fveq2 y = r c y = c r
89 id y = r y = r
90 88 89 eleq12d y = r c y y c r r
91 90 rspccva y ran P c y y r ran P c r r
92 91 adantll φ y ran P c y y r ran P c r r
93 61 2 62 63 5 6 64 8 68 87 92 smflimlem5 φ y ran P c y y x D | G x A S 𝑡 D
94 93 ex φ y ran P c y y x D | G x A S 𝑡 D
95 94 exlimdv φ c y ran P c y y x D | G x A S 𝑡 D
96 60 95 mpd φ x D | G x A S 𝑡 D