Metamath Proof Explorer


Theorem smflimlem6

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem6.1 φM
smflimlem6.2 Z=M
smflimlem6.3 φSSAlg
smflimlem6.4 φF:ZSMblFnS
smflimlem6.5 D=xnZmndomFm|mZFmxdom
smflimlem6.6 G=xDmZFmx
smflimlem6.7 φA
smflimlem6.8 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
Assertion smflimlem6 φxD|GxAS𝑡D

Proof

Step Hyp Ref Expression
1 smflimlem6.1 φM
2 smflimlem6.2 Z=M
3 smflimlem6.3 φSSAlg
4 smflimlem6.4 φF:ZSMblFnS
5 smflimlem6.5 D=xnZmndomFm|mZFmxdom
6 smflimlem6.6 G=xDmZFmx
7 smflimlem6.7 φA
8 smflimlem6.8 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
9 2 fvexi ZV
10 nnex V
11 9 10 xpex Z×V
12 11 a1i φZ×V
13 eqid sS|xdomFm|Fmx<A+1k=sdomFm=sS|xdomFm|Fmx<A+1k=sdomFm
14 13 3 rabexd φsS|xdomFm|Fmx<A+1k=sdomFmV
15 14 adantr φmZksS|xdomFm|Fmx<A+1k=sdomFmV
16 15 ralrimivva φmZksS|xdomFm|Fmx<A+1k=sdomFmV
17 8 fnmpo mZksS|xdomFm|Fmx<A+1k=sdomFmVPFnZ×
18 16 17 syl φPFnZ×
19 fnrndomg Z×VPFnZ×ranPZ×
20 12 18 19 sylc φranPZ×
21 2 uzct Zω
22 nnct ω
23 21 22 pm3.2i Zωω
24 xpct ZωωZ×ω
25 23 24 ax-mp Z×ω
26 25 a1i φZ×ω
27 domtr ranPZ×Z×ωranPω
28 20 26 27 syl2anc φranPω
29 vex yV
30 8 elrnmpog yVyranPmZky=sS|xdomFm|Fmx<A+1k=sdomFm
31 29 30 ax-mp yranPmZky=sS|xdomFm|Fmx<A+1k=sdomFm
32 31 biimpi yranPmZky=sS|xdomFm|Fmx<A+1k=sdomFm
33 32 adantl φyranPmZky=sS|xdomFm|Fmx<A+1k=sdomFm
34 simp3 φmZky=sS|xdomFm|Fmx<A+1k=sdomFmy=sS|xdomFm|Fmx<A+1k=sdomFm
35 3 adantr φmZkSSAlg
36 4 ffvelcdmda φmZFmSMblFnS
37 36 adantrr φmZkFmSMblFnS
38 eqid domFm=domFm
39 7 adantr φkA
40 nnrecre k1k
41 40 adantl φk1k
42 39 41 readdcld φkA+1k
43 42 adantrl φmZkA+1k
44 35 37 38 43 smfpreimalt φmZkxdomFm|Fmx<A+1kS𝑡domFm
45 fvex FmV
46 45 dmex domFmV
47 46 a1i φdomFmV
48 elrest SSAlgdomFmVxdomFm|Fmx<A+1kS𝑡domFmsSxdomFm|Fmx<A+1k=sdomFm
49 3 47 48 syl2anc φxdomFm|Fmx<A+1kS𝑡domFmsSxdomFm|Fmx<A+1k=sdomFm
50 49 adantr φmZkxdomFm|Fmx<A+1kS𝑡domFmsSxdomFm|Fmx<A+1k=sdomFm
51 44 50 mpbid φmZksSxdomFm|Fmx<A+1k=sdomFm
52 rabn0 sS|xdomFm|Fmx<A+1k=sdomFmsSxdomFm|Fmx<A+1k=sdomFm
53 51 52 sylibr φmZksS|xdomFm|Fmx<A+1k=sdomFm
54 53 3adant3 φmZky=sS|xdomFm|Fmx<A+1k=sdomFmsS|xdomFm|Fmx<A+1k=sdomFm
55 34 54 eqnetrd φmZky=sS|xdomFm|Fmx<A+1k=sdomFmy
56 55 3exp φmZky=sS|xdomFm|Fmx<A+1k=sdomFmy
57 56 rexlimdvv φmZky=sS|xdomFm|Fmx<A+1k=sdomFmy
58 57 adantr φyranPmZky=sS|xdomFm|Fmx<A+1k=sdomFmy
59 33 58 mpd φyranPy
60 28 59 axccd2 φcyranPcyy
61 1 adantr φyranPcyyM
62 3 adantr φyranPcyySSAlg
63 4 adantr φyranPcyyF:ZSMblFnS
64 7 adantr φyranPcyyA
65 fvoveq1 l=mclPj=cmPj
66 oveq2 j=kmPj=mPk
67 66 fveq2d j=kcmPj=cmPk
68 65 67 cbvmpov lZ,jclPj=mZ,kcmPk
69 nfcv _knZinilZ,jclPjj
70 nfcv _jZ
71 nfcv _jn
72 nfcv _jm
73 nfmpo2 _jlZ,jclPj
74 nfcv _jk
75 72 73 74 nfov _jmlZ,jclPjk
76 71 75 nfiin _jmnmlZ,jclPjk
77 70 76 nfiun _jnZmnmlZ,jclPjk
78 oveq2 j=kilZ,jclPjj=ilZ,jclPjk
79 78 adantr j=kinilZ,jclPjj=ilZ,jclPjk
80 79 iineq2dv j=kinilZ,jclPjj=inilZ,jclPjk
81 oveq1 i=milZ,jclPjk=mlZ,jclPjk
82 81 cbviinv inilZ,jclPjk=mnmlZ,jclPjk
83 82 a1i j=kinilZ,jclPjk=mnmlZ,jclPjk
84 80 83 eqtrd j=kinilZ,jclPjj=mnmlZ,jclPjk
85 84 adantr j=knZinilZ,jclPjj=mnmlZ,jclPjk
86 85 iuneq2dv j=knZinilZ,jclPjj=nZmnmlZ,jclPjk
87 69 77 86 cbviin jnZinilZ,jclPjj=knZmnmlZ,jclPjk
88 fveq2 y=rcy=cr
89 id y=ry=r
90 88 89 eleq12d y=rcyycrr
91 90 rspccva yranPcyyrranPcrr
92 91 adantll φyranPcyyrranPcrr
93 61 2 62 63 5 6 64 8 68 87 92 smflimlem5 φyranPcyyxD|GxAS𝑡D
94 93 ex φyranPcyyxD|GxAS𝑡D
95 94 exlimdv φcyranPcyyxD|GxAS𝑡D
96 60 95 mpd φxD|GxAS𝑡D