Metamath Proof Explorer


Theorem smfpreimalt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimalt.s φ S SAlg
smfpreimalt.f φ F SMblFn S
smfpreimalt.d D = dom F
smfpreimalt.a φ A
Assertion smfpreimalt φ x D | F x < A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpreimalt.s φ S SAlg
2 smfpreimalt.f φ F SMblFn S
3 smfpreimalt.d D = dom F
4 smfpreimalt.a φ A
5 1 3 issmf φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D
6 2 5 mpbid φ D S F : D a x D | F x < a S 𝑡 D
7 6 simp3d φ a x D | F x < a S 𝑡 D
8 breq2 a = A F x < a F x < A
9 8 rabbidv a = A x D | F x < a = x D | F x < A
10 9 eleq1d a = A x D | F x < a S 𝑡 D x D | F x < A S 𝑡 D
11 10 rspcva A a x D | F x < a S 𝑡 D x D | F x < A S 𝑡 D
12 4 7 11 syl2anc φ x D | F x < A S 𝑡 D