Metamath Proof Explorer


Theorem smfpreimalt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimalt.s φSSAlg
smfpreimalt.f φFSMblFnS
smfpreimalt.d D=domF
smfpreimalt.a φA
Assertion smfpreimalt φxD|Fx<AS𝑡D

Proof

Step Hyp Ref Expression
1 smfpreimalt.s φSSAlg
2 smfpreimalt.f φFSMblFnS
3 smfpreimalt.d D=domF
4 smfpreimalt.a φA
5 1 3 issmf φFSMblFnSDSF:DaxD|Fx<aS𝑡D
6 2 5 mpbid φDSF:DaxD|Fx<aS𝑡D
7 6 simp3d φaxD|Fx<aS𝑡D
8 breq2 a=AFx<aFx<A
9 8 rabbidv a=AxD|Fx<a=xD|Fx<A
10 9 eleq1d a=AxD|Fx<aS𝑡DxD|Fx<AS𝑡D
11 10 rspcva AaxD|Fx<aS𝑡DxD|Fx<AS𝑡D
12 4 7 11 syl2anc φxD|Fx<AS𝑡D