Metamath Proof Explorer


Definition df-smblfn

Description: Define a real-valued measurable function w.r.t. a given sigma-algebra. See Definition 121C of Fremlin1 p. 36 and Definition 135E (b) of Fremlin1 p. 80 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion df-smblfn SMblFn=sSAlgf𝑝𝑚s|af-1−∞as𝑡domf

Detailed syntax breakdown

Step Hyp Ref Expression
0 csmblfn classSMblFn
1 vs setvars
2 csalg classSAlg
3 vf setvarf
4 cr class
5 cpm class𝑝𝑚
6 1 cv setvars
7 6 cuni classs
8 4 7 5 co class𝑝𝑚s
9 va setvara
10 3 cv setvarf
11 10 ccnv classf-1
12 cmnf class−∞
13 cioo class.
14 9 cv setvara
15 12 14 13 co class−∞a
16 11 15 cima classf-1−∞a
17 crest class𝑡
18 10 cdm classdomf
19 6 18 17 co classs𝑡domf
20 16 19 wcel wfff-1−∞as𝑡domf
21 20 9 4 wral wffaf-1−∞as𝑡domf
22 21 3 8 crab classf𝑝𝑚s|af-1−∞as𝑡domf
23 1 2 22 cmpt classsSAlgf𝑝𝑚s|af-1−∞as𝑡domf
24 0 23 wceq wffSMblFn=sSAlgf𝑝𝑚s|af-1−∞as𝑡domf