| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csmblfn |
⊢ SMblFn |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
csalg |
⊢ SAlg |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
cr |
⊢ ℝ |
| 5 |
|
cpm |
⊢ ↑pm |
| 6 |
1
|
cv |
⊢ 𝑠 |
| 7 |
6
|
cuni |
⊢ ∪ 𝑠 |
| 8 |
4 7 5
|
co |
⊢ ( ℝ ↑pm ∪ 𝑠 ) |
| 9 |
|
va |
⊢ 𝑎 |
| 10 |
3
|
cv |
⊢ 𝑓 |
| 11 |
10
|
ccnv |
⊢ ◡ 𝑓 |
| 12 |
|
cmnf |
⊢ -∞ |
| 13 |
|
cioo |
⊢ (,) |
| 14 |
9
|
cv |
⊢ 𝑎 |
| 15 |
12 14 13
|
co |
⊢ ( -∞ (,) 𝑎 ) |
| 16 |
11 15
|
cima |
⊢ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) |
| 17 |
|
crest |
⊢ ↾t |
| 18 |
10
|
cdm |
⊢ dom 𝑓 |
| 19 |
6 18 17
|
co |
⊢ ( 𝑠 ↾t dom 𝑓 ) |
| 20 |
16 19
|
wcel |
⊢ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) |
| 21 |
20 9 4
|
wral |
⊢ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) |
| 22 |
21 3 8
|
crab |
⊢ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } |
| 23 |
1 2 22
|
cmpt |
⊢ ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } ) |
| 24 |
0 23
|
wceq |
⊢ SMblFn = ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } ) |