Metamath Proof Explorer


Definition df-smblfn

Description: Define a real-valued measurable function w.r.t. a given sigma-algebra. See Definition 121C of Fremlin1 p. 36 and Definition 135E (b) of Fremlin1 p. 80 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion df-smblfn SMblFn = ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csmblfn SMblFn
1 vs 𝑠
2 csalg SAlg
3 vf 𝑓
4 cr
5 cpm pm
6 1 cv 𝑠
7 6 cuni 𝑠
8 4 7 5 co ( ℝ ↑pm 𝑠 )
9 va 𝑎
10 3 cv 𝑓
11 10 ccnv 𝑓
12 cmnf -∞
13 cioo (,)
14 9 cv 𝑎
15 12 14 13 co ( -∞ (,) 𝑎 )
16 11 15 cima ( 𝑓 “ ( -∞ (,) 𝑎 ) )
17 crest t
18 10 cdm dom 𝑓
19 6 18 17 co ( 𝑠t dom 𝑓 )
20 16 19 wcel ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 )
21 20 9 4 wral 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 )
22 21 3 8 crab { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) }
23 1 2 22 cmpt ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } )
24 0 23 wceq SMblFn = ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } )