Step |
Hyp |
Ref |
Expression |
0 |
|
csmblfn |
⊢ SMblFn |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
csalg |
⊢ SAlg |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cr |
⊢ ℝ |
5 |
|
cpm |
⊢ ↑pm |
6 |
1
|
cv |
⊢ 𝑠 |
7 |
6
|
cuni |
⊢ ∪ 𝑠 |
8 |
4 7 5
|
co |
⊢ ( ℝ ↑pm ∪ 𝑠 ) |
9 |
|
va |
⊢ 𝑎 |
10 |
3
|
cv |
⊢ 𝑓 |
11 |
10
|
ccnv |
⊢ ◡ 𝑓 |
12 |
|
cmnf |
⊢ -∞ |
13 |
|
cioo |
⊢ (,) |
14 |
9
|
cv |
⊢ 𝑎 |
15 |
12 14 13
|
co |
⊢ ( -∞ (,) 𝑎 ) |
16 |
11 15
|
cima |
⊢ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) |
17 |
|
crest |
⊢ ↾t |
18 |
10
|
cdm |
⊢ dom 𝑓 |
19 |
6 18 17
|
co |
⊢ ( 𝑠 ↾t dom 𝑓 ) |
20 |
16 19
|
wcel |
⊢ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) |
21 |
20 9 4
|
wral |
⊢ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) |
22 |
21 3 8
|
crab |
⊢ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } |
23 |
1 2 22
|
cmpt |
⊢ ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } ) |
24 |
0 23
|
wceq |
⊢ SMblFn = ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } ) |