| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csmblfn | ⊢ SMblFn | 
						
							| 1 |  | vs | ⊢ 𝑠 | 
						
							| 2 |  | csalg | ⊢ SAlg | 
						
							| 3 |  | vf | ⊢ 𝑓 | 
						
							| 4 |  | cr | ⊢ ℝ | 
						
							| 5 |  | cpm | ⊢  ↑pm | 
						
							| 6 | 1 | cv | ⊢ 𝑠 | 
						
							| 7 | 6 | cuni | ⊢ ∪  𝑠 | 
						
							| 8 | 4 7 5 | co | ⊢ ( ℝ  ↑pm  ∪  𝑠 ) | 
						
							| 9 |  | va | ⊢ 𝑎 | 
						
							| 10 | 3 | cv | ⊢ 𝑓 | 
						
							| 11 | 10 | ccnv | ⊢ ◡ 𝑓 | 
						
							| 12 |  | cmnf | ⊢ -∞ | 
						
							| 13 |  | cioo | ⊢ (,) | 
						
							| 14 | 9 | cv | ⊢ 𝑎 | 
						
							| 15 | 12 14 13 | co | ⊢ ( -∞ (,) 𝑎 ) | 
						
							| 16 | 11 15 | cima | ⊢ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) ) | 
						
							| 17 |  | crest | ⊢  ↾t | 
						
							| 18 | 10 | cdm | ⊢ dom  𝑓 | 
						
							| 19 | 6 18 17 | co | ⊢ ( 𝑠  ↾t  dom  𝑓 ) | 
						
							| 20 | 16 19 | wcel | ⊢ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) | 
						
							| 21 | 20 9 4 | wral | ⊢ ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) | 
						
							| 22 | 21 3 8 | crab | ⊢ { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑠 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) } | 
						
							| 23 | 1 2 22 | cmpt | ⊢ ( 𝑠  ∈  SAlg  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑠 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) } ) | 
						
							| 24 | 0 23 | wceq | ⊢ SMblFn  =  ( 𝑠  ∈  SAlg  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑠 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) } ) |