Metamath Proof Explorer


Theorem issmf

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmf.s φ S SAlg
issmf.d D = dom F
Assertion issmf φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D

Proof

Step Hyp Ref Expression
1 issmf.s φ S SAlg
2 issmf.d D = dom F
3 1 2 issmflem φ F SMblFn S D S F : D b y D | F y < b S 𝑡 D
4 breq2 b = a F y < b F y < a
5 4 rabbidv b = a y D | F y < b = y D | F y < a
6 5 eleq1d b = a y D | F y < b S 𝑡 D y D | F y < a S 𝑡 D
7 fveq2 y = x F y = F x
8 7 breq1d y = x F y < a F x < a
9 8 cbvrabv y D | F y < a = x D | F x < a
10 9 eleq1i y D | F y < a S 𝑡 D x D | F x < a S 𝑡 D
11 10 a1i b = a y D | F y < a S 𝑡 D x D | F x < a S 𝑡 D
12 6 11 bitrd b = a y D | F y < b S 𝑡 D x D | F x < a S 𝑡 D
13 12 cbvralvw b y D | F y < b S 𝑡 D a x D | F x < a S 𝑡 D
14 13 3anbi3i D S F : D b y D | F y < b S 𝑡 D D S F : D a x D | F x < a S 𝑡 D
15 14 a1i φ D S F : D b y D | F y < b S 𝑡 D D S F : D a x D | F x < a S 𝑡 D
16 3 15 bitrd φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D