Metamath Proof Explorer


Theorem issmf

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmf.s
|- ( ph -> S e. SAlg )
issmf.d
|- D = dom F
Assertion issmf
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) )

Proof

Step Hyp Ref Expression
1 issmf.s
 |-  ( ph -> S e. SAlg )
2 issmf.d
 |-  D = dom F
3 1 2 issmflem
 |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. b e. RR { y e. D | ( F ` y ) < b } e. ( S |`t D ) ) ) )
4 breq2
 |-  ( b = a -> ( ( F ` y ) < b <-> ( F ` y ) < a ) )
5 4 rabbidv
 |-  ( b = a -> { y e. D | ( F ` y ) < b } = { y e. D | ( F ` y ) < a } )
6 5 eleq1d
 |-  ( b = a -> ( { y e. D | ( F ` y ) < b } e. ( S |`t D ) <-> { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) )
7 fveq2
 |-  ( y = x -> ( F ` y ) = ( F ` x ) )
8 7 breq1d
 |-  ( y = x -> ( ( F ` y ) < a <-> ( F ` x ) < a ) )
9 8 cbvrabv
 |-  { y e. D | ( F ` y ) < a } = { x e. D | ( F ` x ) < a }
10 9 eleq1i
 |-  ( { y e. D | ( F ` y ) < a } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) )
11 10 a1i
 |-  ( b = a -> ( { y e. D | ( F ` y ) < a } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
12 6 11 bitrd
 |-  ( b = a -> ( { y e. D | ( F ` y ) < b } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
13 12 cbvralvw
 |-  ( A. b e. RR { y e. D | ( F ` y ) < b } e. ( S |`t D ) <-> A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) )
14 13 3anbi3i
 |-  ( ( D C_ U. S /\ F : D --> RR /\ A. b e. RR { y e. D | ( F ` y ) < b } e. ( S |`t D ) ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
15 14 a1i
 |-  ( ph -> ( ( D C_ U. S /\ F : D --> RR /\ A. b e. RR { y e. D | ( F ` y ) < b } e. ( S |`t D ) ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) )
16 3 15 bitrd
 |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) )