Metamath Proof Explorer


Theorem salpreimalelt

Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of Fremlin1 p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salpreimalelt.x
|- F/ x ph
salpreimalelt.a
|- F/ a ph
salpreimalelt.s
|- ( ph -> S e. SAlg )
salpreimalelt.u
|- A = U. S
salpreimalelt.b
|- ( ( ph /\ x e. A ) -> B e. RR* )
salpreimalelt.p
|- ( ( ph /\ a e. RR ) -> { x e. A | B <_ a } e. S )
salpreimalelt.c
|- ( ph -> C e. RR )
Assertion salpreimalelt
|- ( ph -> { x e. A | B < C } e. S )

Proof

Step Hyp Ref Expression
1 salpreimalelt.x
 |-  F/ x ph
2 salpreimalelt.a
 |-  F/ a ph
3 salpreimalelt.s
 |-  ( ph -> S e. SAlg )
4 salpreimalelt.u
 |-  A = U. S
5 salpreimalelt.b
 |-  ( ( ph /\ x e. A ) -> B e. RR* )
6 salpreimalelt.p
 |-  ( ( ph /\ a e. RR ) -> { x e. A | B <_ a } e. S )
7 salpreimalelt.c
 |-  ( ph -> C e. RR )
8 nfv
 |-  F/ x a e. RR
9 1 8 nfan
 |-  F/ x ( ph /\ a e. RR )
10 nfv
 |-  F/ b ( ph /\ a e. RR )
11 3 adantr
 |-  ( ( ph /\ a e. RR ) -> S e. SAlg )
12 5 adantlr
 |-  ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR* )
13 nfv
 |-  F/ x b e. RR
14 1 13 nfan
 |-  F/ x ( ph /\ b e. RR )
15 nfv
 |-  F/ a b e. RR
16 2 15 nfan
 |-  F/ a ( ph /\ b e. RR )
17 3 adantr
 |-  ( ( ph /\ b e. RR ) -> S e. SAlg )
18 5 adantlr
 |-  ( ( ( ph /\ b e. RR ) /\ x e. A ) -> B e. RR* )
19 6 adantlr
 |-  ( ( ( ph /\ b e. RR ) /\ a e. RR ) -> { x e. A | B <_ a } e. S )
20 simpr
 |-  ( ( ph /\ b e. RR ) -> b e. RR )
21 14 16 17 4 18 19 20 salpreimalegt
 |-  ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S )
22 21 adantlr
 |-  ( ( ( ph /\ a e. RR ) /\ b e. RR ) -> { x e. A | b < B } e. S )
23 simpr
 |-  ( ( ph /\ a e. RR ) -> a e. RR )
24 9 10 11 12 22 23 salpreimagtge
 |-  ( ( ph /\ a e. RR ) -> { x e. A | a <_ B } e. S )
25 1 2 3 4 5 24 7 salpreimagelt
 |-  ( ph -> { x e. A | B < C } e. S )