| Step |
Hyp |
Ref |
Expression |
| 1 |
|
salpreimalelt.x |
|- F/ x ph |
| 2 |
|
salpreimalelt.a |
|- F/ a ph |
| 3 |
|
salpreimalelt.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
salpreimalelt.u |
|- A = U. S |
| 5 |
|
salpreimalelt.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
| 6 |
|
salpreimalelt.p |
|- ( ( ph /\ a e. RR ) -> { x e. A | B <_ a } e. S ) |
| 7 |
|
salpreimalelt.c |
|- ( ph -> C e. RR ) |
| 8 |
|
nfv |
|- F/ x a e. RR |
| 9 |
1 8
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
| 10 |
|
nfv |
|- F/ b ( ph /\ a e. RR ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
| 12 |
5
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR* ) |
| 13 |
|
nfv |
|- F/ x b e. RR |
| 14 |
1 13
|
nfan |
|- F/ x ( ph /\ b e. RR ) |
| 15 |
|
nfv |
|- F/ a b e. RR |
| 16 |
2 15
|
nfan |
|- F/ a ( ph /\ b e. RR ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ b e. RR ) -> S e. SAlg ) |
| 18 |
5
|
adantlr |
|- ( ( ( ph /\ b e. RR ) /\ x e. A ) -> B e. RR* ) |
| 19 |
6
|
adantlr |
|- ( ( ( ph /\ b e. RR ) /\ a e. RR ) -> { x e. A | B <_ a } e. S ) |
| 20 |
|
simpr |
|- ( ( ph /\ b e. RR ) -> b e. RR ) |
| 21 |
14 16 17 4 18 19 20
|
salpreimalegt |
|- ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) |
| 22 |
21
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ b e. RR ) -> { x e. A | b < B } e. S ) |
| 23 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 24 |
9 10 11 12 22 23
|
salpreimagtge |
|- ( ( ph /\ a e. RR ) -> { x e. A | a <_ B } e. S ) |
| 25 |
1 2 3 4 5 24 7
|
salpreimagelt |
|- ( ph -> { x e. A | B < C } e. S ) |