Step |
Hyp |
Ref |
Expression |
1 |
|
salpreimagtlt.x |
|- F/ x ph |
2 |
|
salpreimagtlt.a |
|- F/ a ph |
3 |
|
salpreimagtlt.s |
|- ( ph -> S e. SAlg ) |
4 |
|
salpreimagtlt.u |
|- A = U. S |
5 |
|
salpreimagtlt.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
6 |
|
salpreimagtlt.p |
|- ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) |
7 |
|
salpreimagtlt.c |
|- ( ph -> C e. RR ) |
8 |
|
nfv |
|- F/ x a e. RR |
9 |
1 8
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
10 |
|
nfv |
|- F/ b ( ph /\ a e. RR ) |
11 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
12 |
5
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR* ) |
13 |
|
nfv |
|- F/ a b e. RR |
14 |
2 13
|
nfan |
|- F/ a ( ph /\ b e. RR ) |
15 |
|
nfv |
|- F/ a { x e. A | b < B } e. S |
16 |
14 15
|
nfim |
|- F/ a ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) |
17 |
|
eleq1w |
|- ( a = b -> ( a e. RR <-> b e. RR ) ) |
18 |
17
|
anbi2d |
|- ( a = b -> ( ( ph /\ a e. RR ) <-> ( ph /\ b e. RR ) ) ) |
19 |
|
breq1 |
|- ( a = b -> ( a < B <-> b < B ) ) |
20 |
19
|
rabbidv |
|- ( a = b -> { x e. A | a < B } = { x e. A | b < B } ) |
21 |
20
|
eleq1d |
|- ( a = b -> ( { x e. A | a < B } e. S <-> { x e. A | b < B } e. S ) ) |
22 |
18 21
|
imbi12d |
|- ( a = b -> ( ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) <-> ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) ) ) |
23 |
16 22 6
|
chvarfv |
|- ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) |
24 |
23
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ b e. RR ) -> { x e. A | b < B } e. S ) |
25 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
26 |
9 10 11 12 24 25
|
salpreimagtge |
|- ( ( ph /\ a e. RR ) -> { x e. A | a <_ B } e. S ) |
27 |
1 2 3 4 5 26 7
|
salpreimagelt |
|- ( ph -> { x e. A | B < C } e. S ) |