| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salpreimagtlt.x |  |-  F/ x ph | 
						
							| 2 |  | salpreimagtlt.a |  |-  F/ a ph | 
						
							| 3 |  | salpreimagtlt.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | salpreimagtlt.u |  |-  A = U. S | 
						
							| 5 |  | salpreimagtlt.b |  |-  ( ( ph /\ x e. A ) -> B e. RR* ) | 
						
							| 6 |  | salpreimagtlt.p |  |-  ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) | 
						
							| 7 |  | salpreimagtlt.c |  |-  ( ph -> C e. RR ) | 
						
							| 8 |  | nfv |  |-  F/ x a e. RR | 
						
							| 9 | 1 8 | nfan |  |-  F/ x ( ph /\ a e. RR ) | 
						
							| 10 |  | nfv |  |-  F/ b ( ph /\ a e. RR ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ a e. RR ) -> S e. SAlg ) | 
						
							| 12 | 5 | adantlr |  |-  ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR* ) | 
						
							| 13 |  | nfv |  |-  F/ a b e. RR | 
						
							| 14 | 2 13 | nfan |  |-  F/ a ( ph /\ b e. RR ) | 
						
							| 15 |  | nfv |  |-  F/ a { x e. A | b < B } e. S | 
						
							| 16 | 14 15 | nfim |  |-  F/ a ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) | 
						
							| 17 |  | eleq1w |  |-  ( a = b -> ( a e. RR <-> b e. RR ) ) | 
						
							| 18 | 17 | anbi2d |  |-  ( a = b -> ( ( ph /\ a e. RR ) <-> ( ph /\ b e. RR ) ) ) | 
						
							| 19 |  | breq1 |  |-  ( a = b -> ( a < B <-> b < B ) ) | 
						
							| 20 | 19 | rabbidv |  |-  ( a = b -> { x e. A | a < B } = { x e. A | b < B } ) | 
						
							| 21 | 20 | eleq1d |  |-  ( a = b -> ( { x e. A | a < B } e. S <-> { x e. A | b < B } e. S ) ) | 
						
							| 22 | 18 21 | imbi12d |  |-  ( a = b -> ( ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) <-> ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) ) ) | 
						
							| 23 | 16 22 6 | chvarfv |  |-  ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) | 
						
							| 24 | 23 | adantlr |  |-  ( ( ( ph /\ a e. RR ) /\ b e. RR ) -> { x e. A | b < B } e. S ) | 
						
							| 25 |  | simpr |  |-  ( ( ph /\ a e. RR ) -> a e. RR ) | 
						
							| 26 | 9 10 11 12 24 25 | salpreimagtge |  |-  ( ( ph /\ a e. RR ) -> { x e. A | a <_ B } e. S ) | 
						
							| 27 | 1 2 3 4 5 26 7 | salpreimagelt |  |-  ( ph -> { x e. A | B < C } e. S ) |