Metamath Proof Explorer


Theorem salpreimagtlt

Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of Fremlin1 p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salpreimagtlt.x
|- F/ x ph
salpreimagtlt.a
|- F/ a ph
salpreimagtlt.s
|- ( ph -> S e. SAlg )
salpreimagtlt.u
|- A = U. S
salpreimagtlt.b
|- ( ( ph /\ x e. A ) -> B e. RR* )
salpreimagtlt.p
|- ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S )
salpreimagtlt.c
|- ( ph -> C e. RR )
Assertion salpreimagtlt
|- ( ph -> { x e. A | B < C } e. S )

Proof

Step Hyp Ref Expression
1 salpreimagtlt.x
 |-  F/ x ph
2 salpreimagtlt.a
 |-  F/ a ph
3 salpreimagtlt.s
 |-  ( ph -> S e. SAlg )
4 salpreimagtlt.u
 |-  A = U. S
5 salpreimagtlt.b
 |-  ( ( ph /\ x e. A ) -> B e. RR* )
6 salpreimagtlt.p
 |-  ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S )
7 salpreimagtlt.c
 |-  ( ph -> C e. RR )
8 nfv
 |-  F/ x a e. RR
9 1 8 nfan
 |-  F/ x ( ph /\ a e. RR )
10 nfv
 |-  F/ b ( ph /\ a e. RR )
11 3 adantr
 |-  ( ( ph /\ a e. RR ) -> S e. SAlg )
12 5 adantlr
 |-  ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR* )
13 nfv
 |-  F/ a b e. RR
14 2 13 nfan
 |-  F/ a ( ph /\ b e. RR )
15 nfv
 |-  F/ a { x e. A | b < B } e. S
16 14 15 nfim
 |-  F/ a ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S )
17 eleq1w
 |-  ( a = b -> ( a e. RR <-> b e. RR ) )
18 17 anbi2d
 |-  ( a = b -> ( ( ph /\ a e. RR ) <-> ( ph /\ b e. RR ) ) )
19 breq1
 |-  ( a = b -> ( a < B <-> b < B ) )
20 19 rabbidv
 |-  ( a = b -> { x e. A | a < B } = { x e. A | b < B } )
21 20 eleq1d
 |-  ( a = b -> ( { x e. A | a < B } e. S <-> { x e. A | b < B } e. S ) )
22 18 21 imbi12d
 |-  ( a = b -> ( ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) <-> ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S ) ) )
23 16 22 6 chvarfv
 |-  ( ( ph /\ b e. RR ) -> { x e. A | b < B } e. S )
24 23 adantlr
 |-  ( ( ( ph /\ a e. RR ) /\ b e. RR ) -> { x e. A | b < B } e. S )
25 simpr
 |-  ( ( ph /\ a e. RR ) -> a e. RR )
26 9 10 11 12 24 25 salpreimagtge
 |-  ( ( ph /\ a e. RR ) -> { x e. A | a <_ B } e. S )
27 1 2 3 4 5 26 7 salpreimagelt
 |-  ( ph -> { x e. A | B < C } e. S )