| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salpreimagtlt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | salpreimagtlt.a | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 3 |  | salpreimagtlt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | salpreimagtlt.u | ⊢ 𝐴  =  ∪  𝑆 | 
						
							| 5 |  | salpreimagtlt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 |  | salpreimagtlt.p | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑎  <  𝐵 }  ∈  𝑆 ) | 
						
							| 7 |  | salpreimagtlt.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  ∈  ℝ | 
						
							| 9 | 1 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 12 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑎 𝑏  ∈  ℝ | 
						
							| 14 | 2 13 | nfan | ⊢ Ⅎ 𝑎 ( 𝜑  ∧  𝑏  ∈  ℝ ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑎 { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 }  ∈  𝑆 | 
						
							| 16 | 14 15 | nfim | ⊢ Ⅎ 𝑎 ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 }  ∈  𝑆 ) | 
						
							| 17 |  | eleq1w | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ∈  ℝ  ↔  𝑏  ∈  ℝ ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ↔  ( 𝜑  ∧  𝑏  ∈  ℝ ) ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  <  𝐵  ↔  𝑏  <  𝐵 ) ) | 
						
							| 20 | 19 | rabbidv | ⊢ ( 𝑎  =  𝑏  →  { 𝑥  ∈  𝐴  ∣  𝑎  <  𝐵 }  =  { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 } ) | 
						
							| 21 | 20 | eleq1d | ⊢ ( 𝑎  =  𝑏  →  ( { 𝑥  ∈  𝐴  ∣  𝑎  <  𝐵 }  ∈  𝑆  ↔  { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 }  ∈  𝑆 ) ) | 
						
							| 22 | 18 21 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑎  <  𝐵 }  ∈  𝑆 )  ↔  ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 }  ∈  𝑆 ) ) ) | 
						
							| 23 | 16 22 6 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 }  ∈  𝑆 ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑏  <  𝐵 }  ∈  𝑆 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 26 | 9 10 11 12 24 25 | salpreimagtge | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑎  ≤  𝐵 }  ∈  𝑆 ) | 
						
							| 27 | 1 2 3 4 5 26 7 | salpreimagelt | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 }  ∈  𝑆 ) |