| Step |
Hyp |
Ref |
Expression |
| 1 |
|
salpreimagtlt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
salpreimagtlt.a |
⊢ Ⅎ 𝑎 𝜑 |
| 3 |
|
salpreimagtlt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
salpreimagtlt.u |
⊢ 𝐴 = ∪ 𝑆 |
| 5 |
|
salpreimagtlt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 6 |
|
salpreimagtlt.p |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } ∈ 𝑆 ) |
| 7 |
|
salpreimagtlt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ∈ ℝ |
| 9 |
1 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
| 12 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑎 𝑏 ∈ ℝ |
| 14 |
2 13
|
nfan |
⊢ Ⅎ 𝑎 ( 𝜑 ∧ 𝑏 ∈ ℝ ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑎 { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ∈ 𝑆 |
| 16 |
14 15
|
nfim |
⊢ Ⅎ 𝑎 ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ∈ 𝑆 ) |
| 17 |
|
eleq1w |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ ℝ ↔ 𝑏 ∈ ℝ ) ) |
| 18 |
17
|
anbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ↔ ( 𝜑 ∧ 𝑏 ∈ ℝ ) ) ) |
| 19 |
|
breq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 < 𝐵 ↔ 𝑏 < 𝐵 ) ) |
| 20 |
19
|
rabbidv |
⊢ ( 𝑎 = 𝑏 → { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑎 = 𝑏 → ( { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } ∈ 𝑆 ↔ { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ∈ 𝑆 ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } ∈ 𝑆 ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ∈ 𝑆 ) ) ) |
| 23 |
16 22 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ∈ 𝑆 ) |
| 24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵 } ∈ 𝑆 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
| 26 |
9 10 11 12 24 25
|
salpreimagtge |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵 } ∈ 𝑆 ) |
| 27 |
1 2 3 4 5 26 7
|
salpreimagelt |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶 } ∈ 𝑆 ) |