Step |
Hyp |
Ref |
Expression |
1 |
|
salpreimagtge.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
salpreimagtge.a |
⊢ Ⅎ 𝑎 𝜑 |
3 |
|
salpreimagtge.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
salpreimagtge.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
5 |
|
salpreimagtge.p |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } ∈ 𝑆 ) |
6 |
|
salpreimagtge.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
7 |
1 4 6
|
preimageiingt |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } = ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
8 |
|
nnct |
⊢ ℕ ≼ ω |
9 |
8
|
a1i |
⊢ ( 𝜑 → ℕ ≼ ω ) |
10 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
11 |
10
|
a1i |
⊢ ( 𝜑 → ℕ ≠ ∅ ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
13 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
15 |
12 14
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
16 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ |
17 |
2 16
|
nfan |
⊢ Ⅎ 𝑎 ( 𝜑 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
18 |
|
nfv |
⊢ Ⅎ 𝑎 { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 |
19 |
17 18
|
nfim |
⊢ Ⅎ 𝑎 ( ( 𝜑 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 ) |
20 |
|
ovex |
⊢ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ V |
21 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝐶 − ( 1 / 𝑛 ) ) → ( 𝑎 ∈ ℝ ↔ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑎 = ( 𝐶 − ( 1 / 𝑛 ) ) → ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) ) ) |
23 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐶 − ( 1 / 𝑛 ) ) → ( 𝑎 < 𝐵 ↔ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) ) |
24 |
23
|
rabbidv |
⊢ ( 𝑎 = ( 𝐶 − ( 1 / 𝑛 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
25 |
24
|
eleq1d |
⊢ ( 𝑎 = ( 𝐶 − ( 1 / 𝑛 ) ) → ( { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } ∈ 𝑆 ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 ) ) |
26 |
22 25
|
imbi12d |
⊢ ( 𝑎 = ( 𝐶 − ( 1 / 𝑛 ) ) → ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵 } ∈ 𝑆 ) ↔ ( ( 𝜑 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 ) ) ) |
27 |
19 20 26 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 ) |
28 |
15 27
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 ) |
29 |
3 9 11 28
|
saliincl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ∈ 𝑆 ) |
30 |
7 29
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ∈ 𝑆 ) |