Metamath Proof Explorer


Theorem salpreimagtge

Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salpreimagtge.x xφ
salpreimagtge.a aφ
salpreimagtge.s φSSAlg
salpreimagtge.b φxAB*
salpreimagtge.p φaxA|a<BS
salpreimagtge.c φC
Assertion salpreimagtge φxA|CBS

Proof

Step Hyp Ref Expression
1 salpreimagtge.x xφ
2 salpreimagtge.a aφ
3 salpreimagtge.s φSSAlg
4 salpreimagtge.b φxAB*
5 salpreimagtge.p φaxA|a<BS
6 salpreimagtge.c φC
7 1 4 6 preimageiingt φxA|CB=nxA|C1n<B
8 nnct ω
9 8 a1i φω
10 nnn0
11 10 a1i φ
12 6 adantr φnC
13 nnrecre n1n
14 13 adantl φn1n
15 12 14 resubcld φnC1n
16 nfv aC1n
17 2 16 nfan aφC1n
18 nfv axA|C1n<BS
19 17 18 nfim aφC1nxA|C1n<BS
20 ovex C1nV
21 eleq1 a=C1naC1n
22 21 anbi2d a=C1nφaφC1n
23 breq1 a=C1na<BC1n<B
24 23 rabbidv a=C1nxA|a<B=xA|C1n<B
25 24 eleq1d a=C1nxA|a<BSxA|C1n<BS
26 22 25 imbi12d a=C1nφaxA|a<BSφC1nxA|C1n<BS
27 19 20 26 5 vtoclf φC1nxA|C1n<BS
28 15 27 syldan φnxA|C1n<BS
29 3 9 11 28 saliincl φnxA|C1n<BS
30 7 29 eqeltrd φxA|CBS