Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | salpreimagtge.x | |
|
salpreimagtge.a | |
||
salpreimagtge.s | |
||
salpreimagtge.b | |
||
salpreimagtge.p | |
||
salpreimagtge.c | |
||
Assertion | salpreimagtge | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagtge.x | |
|
2 | salpreimagtge.a | |
|
3 | salpreimagtge.s | |
|
4 | salpreimagtge.b | |
|
5 | salpreimagtge.p | |
|
6 | salpreimagtge.c | |
|
7 | 1 4 6 | preimageiingt | |
8 | nnct | |
|
9 | 8 | a1i | |
10 | nnn0 | |
|
11 | 10 | a1i | |
12 | 6 | adantr | |
13 | nnrecre | |
|
14 | 13 | adantl | |
15 | 12 14 | resubcld | |
16 | nfv | |
|
17 | 2 16 | nfan | |
18 | nfv | |
|
19 | 17 18 | nfim | |
20 | ovex | |
|
21 | eleq1 | |
|
22 | 21 | anbi2d | |
23 | breq1 | |
|
24 | 23 | rabbidv | |
25 | 24 | eleq1d | |
26 | 22 25 | imbi12d | |
27 | 19 20 26 5 | vtoclf | |
28 | 15 27 | syldan | |
29 | 3 9 11 28 | saliincl | |
30 | 7 29 | eqeltrd | |