Step |
Hyp |
Ref |
Expression |
1 |
|
salpreimagtge.x |
|- F/ x ph |
2 |
|
salpreimagtge.a |
|- F/ a ph |
3 |
|
salpreimagtge.s |
|- ( ph -> S e. SAlg ) |
4 |
|
salpreimagtge.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
5 |
|
salpreimagtge.p |
|- ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) |
6 |
|
salpreimagtge.c |
|- ( ph -> C e. RR ) |
7 |
1 4 6
|
preimageiingt |
|- ( ph -> { x e. A | C <_ B } = |^|_ n e. NN { x e. A | ( C - ( 1 / n ) ) < B } ) |
8 |
|
nnct |
|- NN ~<_ _om |
9 |
8
|
a1i |
|- ( ph -> NN ~<_ _om ) |
10 |
|
nnn0 |
|- NN =/= (/) |
11 |
10
|
a1i |
|- ( ph -> NN =/= (/) ) |
12 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> C e. RR ) |
13 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
14 |
13
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 1 / n ) e. RR ) |
15 |
12 14
|
resubcld |
|- ( ( ph /\ n e. NN ) -> ( C - ( 1 / n ) ) e. RR ) |
16 |
|
nfv |
|- F/ a ( C - ( 1 / n ) ) e. RR |
17 |
2 16
|
nfan |
|- F/ a ( ph /\ ( C - ( 1 / n ) ) e. RR ) |
18 |
|
nfv |
|- F/ a { x e. A | ( C - ( 1 / n ) ) < B } e. S |
19 |
17 18
|
nfim |
|- F/ a ( ( ph /\ ( C - ( 1 / n ) ) e. RR ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) |
20 |
|
ovex |
|- ( C - ( 1 / n ) ) e. _V |
21 |
|
eleq1 |
|- ( a = ( C - ( 1 / n ) ) -> ( a e. RR <-> ( C - ( 1 / n ) ) e. RR ) ) |
22 |
21
|
anbi2d |
|- ( a = ( C - ( 1 / n ) ) -> ( ( ph /\ a e. RR ) <-> ( ph /\ ( C - ( 1 / n ) ) e. RR ) ) ) |
23 |
|
breq1 |
|- ( a = ( C - ( 1 / n ) ) -> ( a < B <-> ( C - ( 1 / n ) ) < B ) ) |
24 |
23
|
rabbidv |
|- ( a = ( C - ( 1 / n ) ) -> { x e. A | a < B } = { x e. A | ( C - ( 1 / n ) ) < B } ) |
25 |
24
|
eleq1d |
|- ( a = ( C - ( 1 / n ) ) -> ( { x e. A | a < B } e. S <-> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) ) |
26 |
22 25
|
imbi12d |
|- ( a = ( C - ( 1 / n ) ) -> ( ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) <-> ( ( ph /\ ( C - ( 1 / n ) ) e. RR ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) ) ) |
27 |
19 20 26 5
|
vtoclf |
|- ( ( ph /\ ( C - ( 1 / n ) ) e. RR ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) |
28 |
15 27
|
syldan |
|- ( ( ph /\ n e. NN ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) |
29 |
3 9 11 28
|
saliincl |
|- ( ph -> |^|_ n e. NN { x e. A | ( C - ( 1 / n ) ) < B } e. S ) |
30 |
7 29
|
eqeltrd |
|- ( ph -> { x e. A | C <_ B } e. S ) |