| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salpreimagtge.x |  |-  F/ x ph | 
						
							| 2 |  | salpreimagtge.a |  |-  F/ a ph | 
						
							| 3 |  | salpreimagtge.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | salpreimagtge.b |  |-  ( ( ph /\ x e. A ) -> B e. RR* ) | 
						
							| 5 |  | salpreimagtge.p |  |-  ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) | 
						
							| 6 |  | salpreimagtge.c |  |-  ( ph -> C e. RR ) | 
						
							| 7 | 1 4 6 | preimageiingt |  |-  ( ph -> { x e. A | C <_ B } = |^|_ n e. NN { x e. A | ( C - ( 1 / n ) ) < B } ) | 
						
							| 8 |  | nnct |  |-  NN ~<_ _om | 
						
							| 9 | 8 | a1i |  |-  ( ph -> NN ~<_ _om ) | 
						
							| 10 |  | nnn0 |  |-  NN =/= (/) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> NN =/= (/) ) | 
						
							| 12 | 6 | adantr |  |-  ( ( ph /\ n e. NN ) -> C e. RR ) | 
						
							| 13 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( 1 / n ) e. RR ) | 
						
							| 15 | 12 14 | resubcld |  |-  ( ( ph /\ n e. NN ) -> ( C - ( 1 / n ) ) e. RR ) | 
						
							| 16 |  | nfv |  |-  F/ a ( C - ( 1 / n ) ) e. RR | 
						
							| 17 | 2 16 | nfan |  |-  F/ a ( ph /\ ( C - ( 1 / n ) ) e. RR ) | 
						
							| 18 |  | nfv |  |-  F/ a { x e. A | ( C - ( 1 / n ) ) < B } e. S | 
						
							| 19 | 17 18 | nfim |  |-  F/ a ( ( ph /\ ( C - ( 1 / n ) ) e. RR ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) | 
						
							| 20 |  | ovex |  |-  ( C - ( 1 / n ) ) e. _V | 
						
							| 21 |  | eleq1 |  |-  ( a = ( C - ( 1 / n ) ) -> ( a e. RR <-> ( C - ( 1 / n ) ) e. RR ) ) | 
						
							| 22 | 21 | anbi2d |  |-  ( a = ( C - ( 1 / n ) ) -> ( ( ph /\ a e. RR ) <-> ( ph /\ ( C - ( 1 / n ) ) e. RR ) ) ) | 
						
							| 23 |  | breq1 |  |-  ( a = ( C - ( 1 / n ) ) -> ( a < B <-> ( C - ( 1 / n ) ) < B ) ) | 
						
							| 24 | 23 | rabbidv |  |-  ( a = ( C - ( 1 / n ) ) -> { x e. A | a < B } = { x e. A | ( C - ( 1 / n ) ) < B } ) | 
						
							| 25 | 24 | eleq1d |  |-  ( a = ( C - ( 1 / n ) ) -> ( { x e. A | a < B } e. S <-> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) ) | 
						
							| 26 | 22 25 | imbi12d |  |-  ( a = ( C - ( 1 / n ) ) -> ( ( ( ph /\ a e. RR ) -> { x e. A | a < B } e. S ) <-> ( ( ph /\ ( C - ( 1 / n ) ) e. RR ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) ) ) | 
						
							| 27 | 19 20 26 5 | vtoclf |  |-  ( ( ph /\ ( C - ( 1 / n ) ) e. RR ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) | 
						
							| 28 | 15 27 | syldan |  |-  ( ( ph /\ n e. NN ) -> { x e. A | ( C - ( 1 / n ) ) < B } e. S ) | 
						
							| 29 | 3 9 11 28 | saliincl |  |-  ( ph -> |^|_ n e. NN { x e. A | ( C - ( 1 / n ) ) < B } e. S ) | 
						
							| 30 | 7 29 | eqeltrd |  |-  ( ph -> { x e. A | C <_ B } e. S ) |