Step |
Hyp |
Ref |
Expression |
1 |
|
salpreimaltle.x |
|- F/ x ph |
2 |
|
salpreimaltle.a |
|- F/ a ph |
3 |
|
salpreimaltle.s |
|- ( ph -> S e. SAlg ) |
4 |
|
salpreimaltle.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
5 |
|
salpreimaltle.p |
|- ( ( ph /\ a e. RR ) -> { x e. A | B < a } e. S ) |
6 |
|
salpreimaltle.c |
|- ( ph -> C e. RR ) |
7 |
1 4 6
|
preimaleiinlt |
|- ( ph -> { x e. A | B <_ C } = |^|_ n e. NN { x e. A | B < ( C + ( 1 / n ) ) } ) |
8 |
|
nnct |
|- NN ~<_ _om |
9 |
8
|
a1i |
|- ( ph -> NN ~<_ _om ) |
10 |
|
nnn0 |
|- NN =/= (/) |
11 |
10
|
a1i |
|- ( ph -> NN =/= (/) ) |
12 |
|
simpl |
|- ( ( ph /\ n e. NN ) -> ph ) |
13 |
|
simpl |
|- ( ( C e. RR /\ n e. NN ) -> C e. RR ) |
14 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
15 |
14
|
adantl |
|- ( ( C e. RR /\ n e. NN ) -> ( 1 / n ) e. RR ) |
16 |
13 15
|
readdcld |
|- ( ( C e. RR /\ n e. NN ) -> ( C + ( 1 / n ) ) e. RR ) |
17 |
6 16
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( C + ( 1 / n ) ) e. RR ) |
18 |
|
nfv |
|- F/ a ( C + ( 1 / n ) ) e. RR |
19 |
2 18
|
nfan |
|- F/ a ( ph /\ ( C + ( 1 / n ) ) e. RR ) |
20 |
|
nfv |
|- F/ a { x e. A | B < ( C + ( 1 / n ) ) } e. S |
21 |
19 20
|
nfim |
|- F/ a ( ( ph /\ ( C + ( 1 / n ) ) e. RR ) -> { x e. A | B < ( C + ( 1 / n ) ) } e. S ) |
22 |
|
ovex |
|- ( C + ( 1 / n ) ) e. _V |
23 |
|
eleq1 |
|- ( a = ( C + ( 1 / n ) ) -> ( a e. RR <-> ( C + ( 1 / n ) ) e. RR ) ) |
24 |
23
|
anbi2d |
|- ( a = ( C + ( 1 / n ) ) -> ( ( ph /\ a e. RR ) <-> ( ph /\ ( C + ( 1 / n ) ) e. RR ) ) ) |
25 |
|
breq2 |
|- ( a = ( C + ( 1 / n ) ) -> ( B < a <-> B < ( C + ( 1 / n ) ) ) ) |
26 |
25
|
rabbidv |
|- ( a = ( C + ( 1 / n ) ) -> { x e. A | B < a } = { x e. A | B < ( C + ( 1 / n ) ) } ) |
27 |
26
|
eleq1d |
|- ( a = ( C + ( 1 / n ) ) -> ( { x e. A | B < a } e. S <-> { x e. A | B < ( C + ( 1 / n ) ) } e. S ) ) |
28 |
24 27
|
imbi12d |
|- ( a = ( C + ( 1 / n ) ) -> ( ( ( ph /\ a e. RR ) -> { x e. A | B < a } e. S ) <-> ( ( ph /\ ( C + ( 1 / n ) ) e. RR ) -> { x e. A | B < ( C + ( 1 / n ) ) } e. S ) ) ) |
29 |
21 22 28 5
|
vtoclf |
|- ( ( ph /\ ( C + ( 1 / n ) ) e. RR ) -> { x e. A | B < ( C + ( 1 / n ) ) } e. S ) |
30 |
12 17 29
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> { x e. A | B < ( C + ( 1 / n ) ) } e. S ) |
31 |
3 9 11 30
|
saliincl |
|- ( ph -> |^|_ n e. NN { x e. A | B < ( C + ( 1 / n ) ) } e. S ) |
32 |
7 31
|
eqeltrd |
|- ( ph -> { x e. A | B <_ C } e. S ) |