| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salpreimaltle.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | salpreimaltle.a | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 3 |  | salpreimaltle.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | salpreimaltle.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 5 |  | salpreimaltle.p | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑎 }  ∈  𝑆 ) | 
						
							| 6 |  | salpreimaltle.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 7 | 1 4 6 | preimaleiinlt | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  =  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 8 |  | nnct | ⊢ ℕ  ≼  ω | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ℕ  ≼  ω ) | 
						
							| 10 |  | nnn0 | ⊢ ℕ  ≠  ∅ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℕ  ≠  ∅ ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝜑 ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  𝐶  ∈  ℝ ) | 
						
							| 14 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 16 | 13 15 | readdcld | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 17 | 6 16 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑎 ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ | 
						
							| 19 | 2 18 | nfan | ⊢ Ⅎ 𝑎 ( 𝜑  ∧  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑎 { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 | 
						
							| 21 | 19 20 | nfim | ⊢ Ⅎ 𝑎 ( ( 𝜑  ∧  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 ) | 
						
							| 22 |  | ovex | ⊢ ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  V | 
						
							| 23 |  | eleq1 | ⊢ ( 𝑎  =  ( 𝐶  +  ( 1  /  𝑛 ) )  →  ( 𝑎  ∈  ℝ  ↔  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) ) | 
						
							| 24 | 23 | anbi2d | ⊢ ( 𝑎  =  ( 𝐶  +  ( 1  /  𝑛 ) )  →  ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ↔  ( 𝜑  ∧  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ ) ) ) | 
						
							| 25 |  | breq2 | ⊢ ( 𝑎  =  ( 𝐶  +  ( 1  /  𝑛 ) )  →  ( 𝐵  <  𝑎  ↔  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 26 | 25 | rabbidv | ⊢ ( 𝑎  =  ( 𝐶  +  ( 1  /  𝑛 ) )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑎 }  =  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) } ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑎  =  ( 𝐶  +  ( 1  /  𝑛 ) )  →  ( { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑎 }  ∈  𝑆  ↔  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 ) ) | 
						
							| 28 | 24 27 | imbi12d | ⊢ ( 𝑎  =  ( 𝐶  +  ( 1  /  𝑛 ) )  →  ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑎 }  ∈  𝑆 )  ↔  ( ( 𝜑  ∧  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 ) ) ) | 
						
							| 29 | 21 22 28 5 | vtoclf | ⊢ ( ( 𝜑  ∧  ( 𝐶  +  ( 1  /  𝑛 ) )  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 ) | 
						
							| 30 | 12 17 29 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 ) | 
						
							| 31 | 3 9 11 30 | saliincl | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ { 𝑥  ∈  𝐴  ∣  𝐵  <  ( 𝐶  +  ( 1  /  𝑛 ) ) }  ∈  𝑆 ) | 
						
							| 32 | 7 31 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 ) |