| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmflem.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | issmflem.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 3 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 4 |  | df-smblfn | ⊢ SMblFn  =  ( 𝑠  ∈  SAlg  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑠 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) } ) | 
						
							| 5 |  | unieq | ⊢ ( 𝑠  =  𝑆  →  ∪  𝑠  =  ∪  𝑆 ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑠  =  𝑆  →  ( ℝ  ↑pm  ∪  𝑠 )  =  ( ℝ  ↑pm  ∪  𝑆 ) ) | 
						
							| 7 | 6 | rabeqdv | ⊢ ( 𝑠  =  𝑆  →  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑠 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) }  =  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) } ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠  ↾t  dom  𝑓 )  =  ( 𝑆  ↾t  dom  𝑓 ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑠  =  𝑆  →  ( ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 )  ↔  ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 )  ↔  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑠  =  𝑆  →  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) }  =  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) } ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( 𝑠  =  𝑆  →  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑠 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑠  ↾t  dom  𝑓 ) }  =  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) } ) | 
						
							| 13 |  | ovex | ⊢ ( ℝ  ↑pm  ∪  𝑆 )  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  ∈  V ) | 
						
							| 16 | 4 12 1 15 | fvmptd3 | ⊢ ( 𝜑  →  ( SMblFn ‘ 𝑆 )  =  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) } ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( SMblFn ‘ 𝑆 )  =  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) } ) | 
						
							| 18 | 3 17 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) } ) | 
						
							| 19 |  | elrabi | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  →  𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 ) ) | 
						
							| 21 |  | elpmi2 | ⊢ ( 𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 )  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 22 | 2 21 | eqsstrid | ⊢ ( 𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 24 | 20 23 | syldan | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 25 |  | elpmi | ⊢ ( 𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 )  →  ( 𝐹 : dom  𝐹 ⟶ ℝ  ∧  dom  𝐹  ⊆  ∪  𝑆 ) ) | 
						
							| 26 | 20 25 | syl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐹 : dom  𝐹 ⟶ ℝ  ∧  dom  𝐹  ⊆  ∪  𝑆 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 28 | 2 | feq2i | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  ↔  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐹 : 𝐷 ⟶ ℝ  ↔  𝐹 : dom  𝐹 ⟶ ℝ ) ) | 
						
							| 30 | 27 29 | mpbird | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 31 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 32 | 31 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  =  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 33 |  | dmeq | ⊢ ( 𝑓  =  𝐹  →  dom  𝑓  =  dom  𝐹 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑆  ↾t  dom  𝑓 )  =  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 35 | 32 34 | eleq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 )  ↔  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 )  ↔  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 37 | 36 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  ↔  ( 𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∧  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 39 | 18 38 | syl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 42 |  | rspa | ⊢ ( ( ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 )  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 43 | 40 41 42 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 44 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 45 |  | simpl | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 47 | 46 | rexrd | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ* ) | 
						
							| 48 | 45 47 | preimaioomnf | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 50 | 44 41 49 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 51 | 2 | oveq2i | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  dom  𝐹 ) | 
						
							| 52 | 51 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 53 | 50 52 | eleq12d | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 54 | 43 53 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 55 | 54 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 56 | 24 30 55 | 3jca | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 57 | 56 | ex | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 58 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 59 | 58 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ ) )  →  ℝ  ∈  V ) | 
						
							| 60 | 1 | uniexd | ⊢ ( 𝜑  →  ∪  𝑆  ∈  V ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ ) )  →  ∪  𝑆  ∈  V ) | 
						
							| 62 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 63 |  | fssxp | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  →  𝐹  ⊆  ( 𝐷  ×  ℝ ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ )  →  𝐹  ⊆  ( 𝐷  ×  ℝ ) ) | 
						
							| 65 |  | xpss1 | ⊢ ( 𝐷  ⊆  ∪  𝑆  →  ( 𝐷  ×  ℝ )  ⊆  ( ∪  𝑆  ×  ℝ ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ )  →  ( 𝐷  ×  ℝ )  ⊆  ( ∪  𝑆  ×  ℝ ) ) | 
						
							| 67 | 64 66 | sstrd | ⊢ ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ )  →  𝐹  ⊆  ( ∪  𝑆  ×  ℝ ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ ) )  →  𝐹  ⊆  ( ∪  𝑆  ×  ℝ ) ) | 
						
							| 69 |  | dmss | ⊢ ( 𝐹  ⊆  ( ∪  𝑆  ×  ℝ )  →  dom  𝐹  ⊆  dom  ( ∪  𝑆  ×  ℝ ) ) | 
						
							| 70 |  | dmxpss | ⊢ dom  ( ∪  𝑆  ×  ℝ )  ⊆  ∪  𝑆 | 
						
							| 71 | 70 | a1i | ⊢ ( 𝐹  ⊆  ( ∪  𝑆  ×  ℝ )  →  dom  ( ∪  𝑆  ×  ℝ )  ⊆  ∪  𝑆 ) | 
						
							| 72 | 69 71 | sstrd | ⊢ ( 𝐹  ⊆  ( ∪  𝑆  ×  ℝ )  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ⊆  ( ∪  𝑆  ×  ℝ ) )  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 74 | 2 73 | eqsstrid | ⊢ ( ( 𝜑  ∧  𝐹  ⊆  ( ∪  𝑆  ×  ℝ ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 75 | 68 74 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 76 |  | elpm2r | ⊢ ( ( ( ℝ  ∈  V  ∧  ∪  𝑆  ∈  V )  ∧  ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝐷  ⊆  ∪  𝑆 ) )  →  𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 ) ) | 
						
							| 77 | 59 61 62 75 76 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ ) )  →  𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 ) ) | 
						
							| 78 | 77 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 ) ) | 
						
							| 79 | 2 | a1i | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  𝐷  =  dom  𝐹 ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 81 | 49 80 | eleq12d | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 82 | 81 | ralbidva | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  →  ( ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 83 | 82 | biimpd | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  →  ( ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 )  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 84 | 83 | imp | ⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) )  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 86 | 85 | 3adantr1 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 87 | 78 86 | jca | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  ( 𝐹  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∧  ∀ 𝑎  ∈  ℝ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 88 | 87 37 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) } ) | 
						
							| 89 | 16 | eqcomd | ⊢ ( 𝜑  →  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  =  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  { 𝑓  ∈  ( ℝ  ↑pm  ∪  𝑆 )  ∣  ∀ 𝑎  ∈  ℝ ( ◡ 𝑓  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝑓 ) }  =  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 91 | 88 90 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 92 | 91 | ex | ⊢ ( 𝜑  →  ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) ) | 
						
							| 93 | 57 92 | impbid | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) |