Step |
Hyp |
Ref |
Expression |
1 |
|
issmflem.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
issmflem.d |
⊢ 𝐷 = dom 𝐹 |
3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
4 |
|
df-smblfn |
⊢ SMblFn = ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } ) |
5 |
|
unieq |
⊢ ( 𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆 ) |
6 |
5
|
oveq2d |
⊢ ( 𝑠 = 𝑆 → ( ℝ ↑pm ∪ 𝑠 ) = ( ℝ ↑pm ∪ 𝑆 ) ) |
7 |
6
|
rabeqdv |
⊢ ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } = { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } ) |
8 |
|
oveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ↾t dom 𝑓 ) = ( 𝑆 ↾t dom 𝑓 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑠 = 𝑆 → ( ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) ↔ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) ↔ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } = { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠 ↾t dom 𝑓 ) } = { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ) |
13 |
|
ovex |
⊢ ( ℝ ↑pm ∪ 𝑆 ) ∈ V |
14 |
13
|
rabex |
⊢ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ∈ V ) |
16 |
4 12 1 15
|
fvmptd3 |
⊢ ( 𝜑 → ( SMblFn ‘ 𝑆 ) = { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( SMblFn ‘ 𝑆 ) = { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ) |
18 |
3 17
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ) |
19 |
|
elrabi |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } → 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ) |
21 |
|
elpmi2 |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) → dom 𝐹 ⊆ ∪ 𝑆 ) |
22 |
2 21
|
eqsstrid |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) → 𝐷 ⊆ ∪ 𝑆 ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
24 |
20 23
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
25 |
|
elpmi |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) → ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ∪ 𝑆 ) ) |
26 |
20 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ∪ 𝑆 ) ) |
27 |
26
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
28 |
2
|
feq2i |
⊢ ( 𝐹 : 𝐷 ⟶ ℝ ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) |
29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐹 : 𝐷 ⟶ ℝ ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) ) |
30 |
27 29
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
31 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
32 |
31
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ) |
33 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
34 |
33
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑆 ↾t dom 𝑓 ) = ( 𝑆 ↾t dom 𝐹 ) ) |
35 |
32 34
|
eleq12d |
⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) ↔ ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
37 |
36
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ↔ ( 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∧ ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
38 |
37
|
simprbi |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
39 |
18 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
41 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
42 |
|
rspa |
⊢ ( ( ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
43 |
40 41 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
44 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ ) |
45 |
|
simpl |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ ) |
46 |
|
simpr |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
47 |
46
|
rexrd |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
48 |
45 47
|
preimaioomnf |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
49 |
48
|
eqcomd |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ) |
50 |
44 41 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ) |
51 |
2
|
oveq2i |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t dom 𝐹 ) |
52 |
51
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t dom 𝐹 ) ) |
53 |
50 52
|
eleq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
54 |
43 53
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
55 |
54
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
56 |
24 30 55
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
58 |
|
reex |
⊢ ℝ ∈ V |
59 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) ) → ℝ ∈ V ) |
60 |
1
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) ) → ∪ 𝑆 ∈ V ) |
62 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
63 |
|
fssxp |
⊢ ( 𝐹 : 𝐷 ⟶ ℝ → 𝐹 ⊆ ( 𝐷 × ℝ ) ) |
64 |
63
|
adantl |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) → 𝐹 ⊆ ( 𝐷 × ℝ ) ) |
65 |
|
xpss1 |
⊢ ( 𝐷 ⊆ ∪ 𝑆 → ( 𝐷 × ℝ ) ⊆ ( ∪ 𝑆 × ℝ ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) → ( 𝐷 × ℝ ) ⊆ ( ∪ 𝑆 × ℝ ) ) |
67 |
64 66
|
sstrd |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) → 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) ) |
69 |
|
dmss |
⊢ ( 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) → dom 𝐹 ⊆ dom ( ∪ 𝑆 × ℝ ) ) |
70 |
|
dmxpss |
⊢ dom ( ∪ 𝑆 × ℝ ) ⊆ ∪ 𝑆 |
71 |
70
|
a1i |
⊢ ( 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) → dom ( ∪ 𝑆 × ℝ ) ⊆ ∪ 𝑆 ) |
72 |
69 71
|
sstrd |
⊢ ( 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) → dom 𝐹 ⊆ ∪ 𝑆 ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) ) → dom 𝐹 ⊆ ∪ 𝑆 ) |
74 |
2 73
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝐹 ⊆ ( ∪ 𝑆 × ℝ ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
75 |
68 74
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
76 |
|
elpm2r |
⊢ ( ( ( ℝ ∈ V ∧ ∪ 𝑆 ∈ V ) ∧ ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝐷 ⊆ ∪ 𝑆 ) ) → 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ) |
77 |
59 61 62 75 76
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ) |
78 |
77
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ) |
79 |
2
|
a1i |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝐷 = dom 𝐹 ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t dom 𝐹 ) ) |
81 |
49 80
|
eleq12d |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
82 |
81
|
ralbidva |
⊢ ( 𝐹 : 𝐷 ⟶ ℝ → ( ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
83 |
82
|
biimpd |
⊢ ( 𝐹 : 𝐷 ⟶ ℝ → ( ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
84 |
83
|
imp |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
86 |
85
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
87 |
78 86
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → ( 𝐹 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∧ ∀ 𝑎 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
88 |
87 37
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } ) |
89 |
16
|
eqcomd |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } = ( SMblFn ‘ 𝑆 ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → { 𝑓 ∈ ( ℝ ↑pm ∪ 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( ◡ 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝑓 ) } = ( SMblFn ‘ 𝑆 ) ) |
91 |
88 90
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
92 |
91
|
ex |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ) |
93 |
57 92
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |