Metamath Proof Explorer


Theorem issmflem

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmflem.s ( 𝜑𝑆 ∈ SAlg )
issmflem.d 𝐷 = dom 𝐹
Assertion issmflem ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 issmflem.s ( 𝜑𝑆 ∈ SAlg )
2 issmflem.d 𝐷 = dom 𝐹
3 simpr ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
4 df-smblfn SMblFn = ( 𝑠 ∈ SAlg ↦ { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } )
5 unieq ( 𝑠 = 𝑆 𝑠 = 𝑆 )
6 5 oveq2d ( 𝑠 = 𝑆 → ( ℝ ↑pm 𝑠 ) = ( ℝ ↑pm 𝑆 ) )
7 6 rabeqdv ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } = { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } )
8 oveq1 ( 𝑠 = 𝑆 → ( 𝑠t dom 𝑓 ) = ( 𝑆t dom 𝑓 ) )
9 8 eleq2d ( 𝑠 = 𝑆 → ( ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) ↔ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) ) )
10 9 ralbidv ( 𝑠 = 𝑆 → ( ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) ↔ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) ) )
11 10 rabbidv ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } = { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } )
12 7 11 eqtrd ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℝ ↑pm 𝑠 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑠t dom 𝑓 ) } = { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } )
13 ovex ( ℝ ↑pm 𝑆 ) ∈ V
14 13 rabex { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } ∈ V
15 14 a1i ( 𝜑 → { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } ∈ V )
16 4 12 1 15 fvmptd3 ( 𝜑 → ( SMblFn ‘ 𝑆 ) = { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } )
17 16 adantr ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( SMblFn ‘ 𝑆 ) = { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } )
18 3 17 eleqtrd ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } )
19 elrabi ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } → 𝐹 ∈ ( ℝ ↑pm 𝑆 ) )
20 18 19 syl ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( ℝ ↑pm 𝑆 ) )
21 elpmi2 ( 𝐹 ∈ ( ℝ ↑pm 𝑆 ) → dom 𝐹 𝑆 )
22 2 21 eqsstrid ( 𝐹 ∈ ( ℝ ↑pm 𝑆 ) → 𝐷 𝑆 )
23 22 adantl ( ( 𝜑𝐹 ∈ ( ℝ ↑pm 𝑆 ) ) → 𝐷 𝑆 )
24 20 23 syldan ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 𝑆 )
25 elpmi ( 𝐹 ∈ ( ℝ ↑pm 𝑆 ) → ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 𝑆 ) )
26 20 25 syl ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 𝑆 ) )
27 26 simpld ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : dom 𝐹 ⟶ ℝ )
28 2 feq2i ( 𝐹 : 𝐷 ⟶ ℝ ↔ 𝐹 : dom 𝐹 ⟶ ℝ )
29 28 a1i ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐹 : 𝐷 ⟶ ℝ ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) )
30 27 29 mpbird ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ )
31 cnveq ( 𝑓 = 𝐹 𝑓 = 𝐹 )
32 31 imaeq1d ( 𝑓 = 𝐹 → ( 𝑓 “ ( -∞ (,) 𝑎 ) ) = ( 𝐹 “ ( -∞ (,) 𝑎 ) ) )
33 dmeq ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 )
34 33 oveq2d ( 𝑓 = 𝐹 → ( 𝑆t dom 𝑓 ) = ( 𝑆t dom 𝐹 ) )
35 32 34 eleq12d ( 𝑓 = 𝐹 → ( ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) ↔ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
36 35 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) ↔ ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
37 36 elrab ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } ↔ ( 𝐹 ∈ ( ℝ ↑pm 𝑆 ) ∧ ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
38 37 simprbi ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
39 18 38 syl ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
40 39 adantr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
41 simpr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ )
42 rspa ( ( ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
43 40 41 42 syl2anc ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
44 30 adantr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ )
45 simpl ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ )
46 simpr ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ )
47 46 rexrd ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* )
48 45 47 preimaioomnf ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } )
49 48 eqcomd ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } = ( 𝐹 “ ( -∞ (,) 𝑎 ) ) )
50 44 41 49 syl2anc ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } = ( 𝐹 “ ( -∞ (,) 𝑎 ) ) )
51 2 oveq2i ( 𝑆t 𝐷 ) = ( 𝑆t dom 𝐹 )
52 51 a1i ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ( 𝑆t 𝐷 ) = ( 𝑆t dom 𝐹 ) )
53 50 52 eleq12d ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → ( { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
54 43 53 mpbird ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
55 54 ralrimiva ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
56 24 30 55 3jca ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
57 56 ex ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
58 reex ℝ ∈ V
59 58 a1i ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) ) → ℝ ∈ V )
60 1 uniexd ( 𝜑 𝑆 ∈ V )
61 60 adantr ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) ) → 𝑆 ∈ V )
62 simprr ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐹 : 𝐷 ⟶ ℝ )
63 fssxp ( 𝐹 : 𝐷 ⟶ ℝ → 𝐹 ⊆ ( 𝐷 × ℝ ) )
64 63 adantl ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) → 𝐹 ⊆ ( 𝐷 × ℝ ) )
65 xpss1 ( 𝐷 𝑆 → ( 𝐷 × ℝ ) ⊆ ( 𝑆 × ℝ ) )
66 65 adantr ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) → ( 𝐷 × ℝ ) ⊆ ( 𝑆 × ℝ ) )
67 64 66 sstrd ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) → 𝐹 ⊆ ( 𝑆 × ℝ ) )
68 67 adantl ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐹 ⊆ ( 𝑆 × ℝ ) )
69 dmss ( 𝐹 ⊆ ( 𝑆 × ℝ ) → dom 𝐹 ⊆ dom ( 𝑆 × ℝ ) )
70 dmxpss dom ( 𝑆 × ℝ ) ⊆ 𝑆
71 70 a1i ( 𝐹 ⊆ ( 𝑆 × ℝ ) → dom ( 𝑆 × ℝ ) ⊆ 𝑆 )
72 69 71 sstrd ( 𝐹 ⊆ ( 𝑆 × ℝ ) → dom 𝐹 𝑆 )
73 72 adantl ( ( 𝜑𝐹 ⊆ ( 𝑆 × ℝ ) ) → dom 𝐹 𝑆 )
74 2 73 eqsstrid ( ( 𝜑𝐹 ⊆ ( 𝑆 × ℝ ) ) → 𝐷 𝑆 )
75 68 74 syldan ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐷 𝑆 )
76 elpm2r ( ( ( ℝ ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝐷 𝑆 ) ) → 𝐹 ∈ ( ℝ ↑pm 𝑆 ) )
77 59 61 62 75 76 syl22anc ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ) ) → 𝐹 ∈ ( ℝ ↑pm 𝑆 ) )
78 77 3adantr3 ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝐹 ∈ ( ℝ ↑pm 𝑆 ) )
79 2 a1i ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → 𝐷 = dom 𝐹 )
80 79 oveq2d ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → ( 𝑆t 𝐷 ) = ( 𝑆t dom 𝐹 ) )
81 49 80 eleq12d ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑎 ∈ ℝ ) → ( { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
82 81 ralbidva ( 𝐹 : 𝐷 ⟶ ℝ → ( ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
83 82 biimpd ( 𝐹 : 𝐷 ⟶ ℝ → ( ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
84 83 imp ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
85 84 adantl ( ( 𝜑 ∧ ( 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
86 85 3adantr1 ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
87 78 86 jca ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → ( 𝐹 ∈ ( ℝ ↑pm 𝑆 ) ∧ ∀ 𝑎 ∈ ℝ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) ) )
88 87 37 sylibr ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } )
89 16 eqcomd ( 𝜑 → { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } = ( SMblFn ‘ 𝑆 ) )
90 89 adantr ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → { 𝑓 ∈ ( ℝ ↑pm 𝑆 ) ∣ ∀ 𝑎 ∈ ℝ ( 𝑓 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝑓 ) } = ( SMblFn ‘ 𝑆 ) )
91 88 90 eleqtrd ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
92 91 ex ( 𝜑 → ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) )
93 57 92 impbid ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )