Metamath Proof Explorer


Theorem issmf

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmf.s ( 𝜑𝑆 ∈ SAlg )
issmf.d 𝐷 = dom 𝐹
Assertion issmf ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 issmf.s ( 𝜑𝑆 ∈ SAlg )
2 issmf.d 𝐷 = dom 𝐹
3 1 2 issmflem ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) )
4 breq2 ( 𝑏 = 𝑎 → ( ( 𝐹𝑦 ) < 𝑏 ↔ ( 𝐹𝑦 ) < 𝑎 ) )
5 4 rabbidv ( 𝑏 = 𝑎 → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } = { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } )
6 5 eleq1d ( 𝑏 = 𝑎 → ( { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
7 fveq2 ( 𝑦 = 𝑥 → ( 𝐹𝑦 ) = ( 𝐹𝑥 ) )
8 7 breq1d ( 𝑦 = 𝑥 → ( ( 𝐹𝑦 ) < 𝑎 ↔ ( 𝐹𝑥 ) < 𝑎 ) )
9 8 cbvrabv { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 }
10 9 eleq1i ( { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
11 10 a1i ( 𝑏 = 𝑎 → ( { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
12 6 11 bitrd ( 𝑏 = 𝑎 → ( { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
13 12 cbvralvw ( ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
14 13 3anbi3i ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
15 14 a1i ( 𝜑 → ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
16 3 15 bitrd ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )