Step |
Hyp |
Ref |
Expression |
1 |
|
issmf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
issmf.d |
⊢ 𝐷 = dom 𝐹 |
3 |
1 2
|
issmflem |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
4 |
|
breq2 |
⊢ ( 𝑏 = 𝑎 → ( ( 𝐹 ‘ 𝑦 ) < 𝑏 ↔ ( 𝐹 ‘ 𝑦 ) < 𝑎 ) ) |
5 |
4
|
rabbidv |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } = { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ) |
6 |
5
|
eleq1d |
⊢ ( 𝑏 = 𝑎 → ( { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
7
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) < 𝑎 ↔ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
9 |
8
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
10 |
9
|
eleq1i |
⊢ ( { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
11 |
10
|
a1i |
⊢ ( 𝑏 = 𝑎 → ( { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
12 |
6 11
|
bitrd |
⊢ ( 𝑏 = 𝑎 → ( { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
14 |
13
|
3anbi3i |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
16 |
3 15
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |