Step |
Hyp |
Ref |
Expression |
1 |
|
issmflem.s |
|
2 |
|
issmflem.d |
|
3 |
|
simpr |
|
4 |
|
df-smblfn |
|
5 |
|
unieq |
|
6 |
5
|
oveq2d |
|
7 |
6
|
rabeqdv |
|
8 |
|
oveq1 |
|
9 |
8
|
eleq2d |
|
10 |
9
|
ralbidv |
|
11 |
10
|
rabbidv |
|
12 |
7 11
|
eqtrd |
|
13 |
|
ovex |
|
14 |
13
|
rabex |
|
15 |
14
|
a1i |
|
16 |
4 12 1 15
|
fvmptd3 |
|
17 |
16
|
adantr |
|
18 |
3 17
|
eleqtrd |
|
19 |
|
elrabi |
|
20 |
18 19
|
syl |
|
21 |
|
elpmi2 |
|
22 |
2 21
|
eqsstrid |
|
23 |
22
|
adantl |
|
24 |
20 23
|
syldan |
|
25 |
|
elpmi |
|
26 |
20 25
|
syl |
|
27 |
26
|
simpld |
|
28 |
2
|
feq2i |
|
29 |
28
|
a1i |
|
30 |
27 29
|
mpbird |
|
31 |
|
cnveq |
|
32 |
31
|
imaeq1d |
|
33 |
|
dmeq |
|
34 |
33
|
oveq2d |
|
35 |
32 34
|
eleq12d |
|
36 |
35
|
ralbidv |
|
37 |
36
|
elrab |
|
38 |
37
|
simprbi |
|
39 |
18 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
|
simpr |
|
42 |
|
rspa |
|
43 |
40 41 42
|
syl2anc |
|
44 |
30
|
adantr |
|
45 |
|
simpl |
|
46 |
|
simpr |
|
47 |
46
|
rexrd |
|
48 |
45 47
|
preimaioomnf |
|
49 |
48
|
eqcomd |
|
50 |
44 41 49
|
syl2anc |
|
51 |
2
|
oveq2i |
|
52 |
51
|
a1i |
|
53 |
50 52
|
eleq12d |
|
54 |
43 53
|
mpbird |
|
55 |
54
|
ralrimiva |
|
56 |
24 30 55
|
3jca |
|
57 |
56
|
ex |
|
58 |
|
reex |
|
59 |
58
|
a1i |
|
60 |
1
|
uniexd |
|
61 |
60
|
adantr |
|
62 |
|
simprr |
|
63 |
|
fssxp |
|
64 |
63
|
adantl |
|
65 |
|
xpss1 |
|
66 |
65
|
adantr |
|
67 |
64 66
|
sstrd |
|
68 |
67
|
adantl |
|
69 |
|
dmss |
|
70 |
|
dmxpss |
|
71 |
70
|
a1i |
|
72 |
69 71
|
sstrd |
|
73 |
72
|
adantl |
|
74 |
2 73
|
eqsstrid |
|
75 |
68 74
|
syldan |
|
76 |
|
elpm2r |
|
77 |
59 61 62 75 76
|
syl22anc |
|
78 |
77
|
3adantr3 |
|
79 |
2
|
a1i |
|
80 |
79
|
oveq2d |
|
81 |
49 80
|
eleq12d |
|
82 |
81
|
ralbidva |
|
83 |
82
|
biimpd |
|
84 |
83
|
imp |
|
85 |
84
|
adantl |
|
86 |
85
|
3adantr1 |
|
87 |
78 86
|
jca |
|
88 |
87 37
|
sylibr |
|
89 |
16
|
eqcomd |
|
90 |
89
|
adantr |
|
91 |
88 90
|
eleqtrd |
|
92 |
91
|
ex |
|
93 |
57 92
|
impbid |
|