Description: If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of Fremlin1 p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | salpreimagtlt.x | |
|
salpreimagtlt.a | |
||
salpreimagtlt.s | |
||
salpreimagtlt.u | |
||
salpreimagtlt.b | |
||
salpreimagtlt.p | |
||
salpreimagtlt.c | |
||
Assertion | salpreimagtlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagtlt.x | |
|
2 | salpreimagtlt.a | |
|
3 | salpreimagtlt.s | |
|
4 | salpreimagtlt.u | |
|
5 | salpreimagtlt.b | |
|
6 | salpreimagtlt.p | |
|
7 | salpreimagtlt.c | |
|
8 | nfv | |
|
9 | 1 8 | nfan | |
10 | nfv | |
|
11 | 3 | adantr | |
12 | 5 | adantlr | |
13 | nfv | |
|
14 | 2 13 | nfan | |
15 | nfv | |
|
16 | 14 15 | nfim | |
17 | eleq1w | |
|
18 | 17 | anbi2d | |
19 | breq1 | |
|
20 | 19 | rabbidv | |
21 | 20 | eleq1d | |
22 | 18 21 | imbi12d | |
23 | 16 22 6 | chvarfv | |
24 | 23 | adantlr | |
25 | simpr | |
|
26 | 9 10 11 12 24 25 | salpreimagtge | |
27 | 1 2 3 4 5 26 7 | salpreimagelt | |