Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem6.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smflimlem6.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smflimlem6.3 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smflimlem6.4 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smflimlem6.5 |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
6 |
|
smflimlem6.6 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
7 |
|
smflimlem6.7 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
8 |
|
smflimlem6.8 |
⊢ 𝑃 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
9 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
10 |
|
nnex |
⊢ ℕ ∈ V |
11 |
9 10
|
xpex |
⊢ ( 𝑍 × ℕ ) ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑍 × ℕ ) ∈ V ) |
13 |
|
eqid |
⊢ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } |
14 |
13 3
|
rabexd |
⊢ ( 𝜑 → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
16 |
15
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
17 |
8
|
fnmpo |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V → 𝑃 Fn ( 𝑍 × ℕ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑃 Fn ( 𝑍 × ℕ ) ) |
19 |
|
fnrndomg |
⊢ ( ( 𝑍 × ℕ ) ∈ V → ( 𝑃 Fn ( 𝑍 × ℕ ) → ran 𝑃 ≼ ( 𝑍 × ℕ ) ) ) |
20 |
12 18 19
|
sylc |
⊢ ( 𝜑 → ran 𝑃 ≼ ( 𝑍 × ℕ ) ) |
21 |
2
|
uzct |
⊢ 𝑍 ≼ ω |
22 |
|
nnct |
⊢ ℕ ≼ ω |
23 |
21 22
|
pm3.2i |
⊢ ( 𝑍 ≼ ω ∧ ℕ ≼ ω ) |
24 |
|
xpct |
⊢ ( ( 𝑍 ≼ ω ∧ ℕ ≼ ω ) → ( 𝑍 × ℕ ) ≼ ω ) |
25 |
23 24
|
ax-mp |
⊢ ( 𝑍 × ℕ ) ≼ ω |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( 𝑍 × ℕ ) ≼ ω ) |
27 |
|
domtr |
⊢ ( ( ran 𝑃 ≼ ( 𝑍 × ℕ ) ∧ ( 𝑍 × ℕ ) ≼ ω ) → ran 𝑃 ≼ ω ) |
28 |
20 26 27
|
syl2anc |
⊢ ( 𝜑 → ran 𝑃 ≼ ω ) |
29 |
|
vex |
⊢ 𝑦 ∈ V |
30 |
8
|
elrnmpog |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝑃 ↔ ∃ 𝑚 ∈ 𝑍 ∃ 𝑘 ∈ ℕ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
31 |
29 30
|
ax-mp |
⊢ ( 𝑦 ∈ ran 𝑃 ↔ ∃ 𝑚 ∈ 𝑍 ∃ 𝑘 ∈ ℕ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
32 |
31
|
biimpi |
⊢ ( 𝑦 ∈ ran 𝑃 → ∃ 𝑚 ∈ 𝑍 ∃ 𝑘 ∈ ℕ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → ∃ 𝑚 ∈ 𝑍 ∃ 𝑘 ∈ ℕ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
34 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
35 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → 𝑆 ∈ SAlg ) |
36 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
37 |
36
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
38 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
39 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
40 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
42 |
39 41
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 + ( 1 / 𝑘 ) ) ∈ ℝ ) |
43 |
42
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → ( 𝐴 + ( 1 / 𝑘 ) ) ∈ ℝ ) |
44 |
35 37 38 43
|
smfpreimalt |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ) |
45 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
46 |
45
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
47 |
46
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
48 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ dom ( 𝐹 ‘ 𝑚 ) ∈ V ) → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
49 |
3 47 48
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
51 |
44 50
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → ∃ 𝑠 ∈ 𝑆 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
52 |
|
rabn0 |
⊢ ( { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ↔ ∃ 𝑠 ∈ 𝑆 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
53 |
51 52
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ) |
54 |
53
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ) |
55 |
34 54
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → 𝑦 ≠ ∅ ) |
56 |
55
|
3exp |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ) → ( 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) ) |
57 |
56
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 ∃ 𝑘 ∈ ℕ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → ( ∃ 𝑚 ∈ 𝑍 ∃ 𝑘 ∈ ℕ 𝑦 = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) |
59 |
33 58
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → 𝑦 ≠ ∅ ) |
60 |
28 59
|
axccd2 |
⊢ ( 𝜑 → ∃ 𝑐 ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) |
61 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) → 𝑀 ∈ ℤ ) |
62 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) → 𝑆 ∈ SAlg ) |
63 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
64 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) → 𝐴 ∈ ℝ ) |
65 |
|
fvoveq1 |
⊢ ( 𝑙 = 𝑚 → ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) = ( 𝑐 ‘ ( 𝑚 𝑃 𝑗 ) ) ) |
66 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑚 𝑃 𝑗 ) = ( 𝑚 𝑃 𝑘 ) ) |
67 |
66
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑐 ‘ ( 𝑚 𝑃 𝑗 ) ) = ( 𝑐 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
68 |
65 67
|
cbvmpov |
⊢ ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
69 |
|
nfcv |
⊢ Ⅎ 𝑘 ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) |
70 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑍 |
71 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ℤ≥ ‘ 𝑛 ) |
72 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑚 |
73 |
|
nfmpo2 |
⊢ Ⅎ 𝑗 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) |
74 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑘 |
75 |
72 73 74
|
nfov |
⊢ Ⅎ 𝑗 ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) |
76 |
71 75
|
nfiin |
⊢ Ⅎ 𝑗 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) |
77 |
70 76
|
nfiun |
⊢ Ⅎ 𝑗 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) |
78 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
79 |
78
|
adantr |
⊢ ( ( 𝑗 = 𝑘 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
80 |
79
|
iineq2dv |
⊢ ( 𝑗 = 𝑘 → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
81 |
|
oveq1 |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) = ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
82 |
81
|
cbviinv |
⊢ ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) |
83 |
82
|
a1i |
⊢ ( 𝑗 = 𝑘 → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
84 |
80 83
|
eqtrd |
⊢ ( 𝑗 = 𝑘 → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝑗 = 𝑘 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
86 |
85
|
iuneq2dv |
⊢ ( 𝑗 = 𝑘 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) ) |
87 |
69 77 86
|
cbviin |
⊢ ∩ 𝑗 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 ( 𝑙 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) |
88 |
|
fveq2 |
⊢ ( 𝑦 = 𝑟 → ( 𝑐 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑟 ) ) |
89 |
|
id |
⊢ ( 𝑦 = 𝑟 → 𝑦 = 𝑟 ) |
90 |
88 89
|
eleq12d |
⊢ ( 𝑦 = 𝑟 → ( ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑐 ‘ 𝑟 ) ∈ 𝑟 ) ) |
91 |
90
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝑐 ‘ 𝑟 ) ∈ 𝑟 ) |
92 |
91
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝑐 ‘ 𝑟 ) ∈ 𝑟 ) |
93 |
61 2 62 63 5 6 64 8 68 87 92
|
smflimlem5 |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
94 |
93
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
95 |
94
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑐 ∀ 𝑦 ∈ ran 𝑃 ( 𝑐 ‘ 𝑦 ) ∈ 𝑦 → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
96 |
60 95
|
mpd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |