Metamath Proof Explorer


Theorem smflimlem6

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem6.1 ( 𝜑𝑀 ∈ ℤ )
smflimlem6.2 𝑍 = ( ℤ𝑀 )
smflimlem6.3 ( 𝜑𝑆 ∈ SAlg )
smflimlem6.4 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflimlem6.5 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
smflimlem6.6 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
smflimlem6.7 ( 𝜑𝐴 ∈ ℝ )
smflimlem6.8 𝑃 = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
Assertion smflimlem6 ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smflimlem6.1 ( 𝜑𝑀 ∈ ℤ )
2 smflimlem6.2 𝑍 = ( ℤ𝑀 )
3 smflimlem6.3 ( 𝜑𝑆 ∈ SAlg )
4 smflimlem6.4 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
5 smflimlem6.5 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
6 smflimlem6.6 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
7 smflimlem6.7 ( 𝜑𝐴 ∈ ℝ )
8 smflimlem6.8 𝑃 = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
9 2 fvexi 𝑍 ∈ V
10 nnex ℕ ∈ V
11 9 10 xpex ( 𝑍 × ℕ ) ∈ V
12 11 a1i ( 𝜑 → ( 𝑍 × ℕ ) ∈ V )
13 eqid { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) }
14 13 3 rabexd ( 𝜑 → { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ∈ V )
15 14 adantr ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ∈ V )
16 15 ralrimivva ( 𝜑 → ∀ 𝑚𝑍𝑘 ∈ ℕ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ∈ V )
17 8 fnmpo ( ∀ 𝑚𝑍𝑘 ∈ ℕ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ∈ V → 𝑃 Fn ( 𝑍 × ℕ ) )
18 16 17 syl ( 𝜑𝑃 Fn ( 𝑍 × ℕ ) )
19 fnrndomg ( ( 𝑍 × ℕ ) ∈ V → ( 𝑃 Fn ( 𝑍 × ℕ ) → ran 𝑃 ≼ ( 𝑍 × ℕ ) ) )
20 12 18 19 sylc ( 𝜑 → ran 𝑃 ≼ ( 𝑍 × ℕ ) )
21 2 uzct 𝑍 ≼ ω
22 nnct ℕ ≼ ω
23 21 22 pm3.2i ( 𝑍 ≼ ω ∧ ℕ ≼ ω )
24 xpct ( ( 𝑍 ≼ ω ∧ ℕ ≼ ω ) → ( 𝑍 × ℕ ) ≼ ω )
25 23 24 ax-mp ( 𝑍 × ℕ ) ≼ ω
26 25 a1i ( 𝜑 → ( 𝑍 × ℕ ) ≼ ω )
27 domtr ( ( ran 𝑃 ≼ ( 𝑍 × ℕ ) ∧ ( 𝑍 × ℕ ) ≼ ω ) → ran 𝑃 ≼ ω )
28 20 26 27 syl2anc ( 𝜑 → ran 𝑃 ≼ ω )
29 vex 𝑦 ∈ V
30 8 elrnmpog ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝑃 ↔ ∃ 𝑚𝑍𝑘 ∈ ℕ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ) )
31 29 30 ax-mp ( 𝑦 ∈ ran 𝑃 ↔ ∃ 𝑚𝑍𝑘 ∈ ℕ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
32 31 biimpi ( 𝑦 ∈ ran 𝑃 → ∃ 𝑚𝑍𝑘 ∈ ℕ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
33 32 adantl ( ( 𝜑𝑦 ∈ ran 𝑃 ) → ∃ 𝑚𝑍𝑘 ∈ ℕ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
34 simp3 ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ∧ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ) → 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
35 3 adantr ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → 𝑆 ∈ SAlg )
36 4 ffvelrnda ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) )
37 36 adantrr ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → ( 𝐹𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) )
38 eqid dom ( 𝐹𝑚 ) = dom ( 𝐹𝑚 )
39 7 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ )
40 nnrecre ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ )
41 40 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ )
42 39 41 readdcld ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐴 + ( 1 / 𝑘 ) ) ∈ ℝ )
43 42 adantrl ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → ( 𝐴 + ( 1 / 𝑘 ) ) ∈ ℝ )
44 35 37 38 43 smfpreimalt ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆t dom ( 𝐹𝑚 ) ) )
45 fvex ( 𝐹𝑚 ) ∈ V
46 45 dmex dom ( 𝐹𝑚 ) ∈ V
47 46 a1i ( 𝜑 → dom ( 𝐹𝑚 ) ∈ V )
48 elrest ( ( 𝑆 ∈ SAlg ∧ dom ( 𝐹𝑚 ) ∈ V ) → ( { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆t dom ( 𝐹𝑚 ) ) ↔ ∃ 𝑠𝑆 { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) ) )
49 3 47 48 syl2anc ( 𝜑 → ( { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆t dom ( 𝐹𝑚 ) ) ↔ ∃ 𝑠𝑆 { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) ) )
50 49 adantr ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → ( { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∈ ( 𝑆t dom ( 𝐹𝑚 ) ) ↔ ∃ 𝑠𝑆 { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) ) )
51 44 50 mpbid ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → ∃ 𝑠𝑆 { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) )
52 rabn0 ( { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ≠ ∅ ↔ ∃ 𝑠𝑆 { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) )
53 51 52 sylibr ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ) → { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ≠ ∅ )
54 53 3adant3 ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ∧ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ) → { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ≠ ∅ )
55 34 54 eqnetrd ( ( 𝜑 ∧ ( 𝑚𝑍𝑘 ∈ ℕ ) ∧ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } ) → 𝑦 ≠ ∅ )
56 55 3exp ( 𝜑 → ( ( 𝑚𝑍𝑘 ∈ ℕ ) → ( 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } → 𝑦 ≠ ∅ ) ) )
57 56 rexlimdvv ( 𝜑 → ( ∃ 𝑚𝑍𝑘 ∈ ℕ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } → 𝑦 ≠ ∅ ) )
58 57 adantr ( ( 𝜑𝑦 ∈ ran 𝑃 ) → ( ∃ 𝑚𝑍𝑘 ∈ ℕ 𝑦 = { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } → 𝑦 ≠ ∅ ) )
59 33 58 mpd ( ( 𝜑𝑦 ∈ ran 𝑃 ) → 𝑦 ≠ ∅ )
60 28 59 axccd2 ( 𝜑 → ∃ 𝑐𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 )
61 1 adantr ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 ) → 𝑀 ∈ ℤ )
62 3 adantr ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 ) → 𝑆 ∈ SAlg )
63 4 adantr ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
64 7 adantr ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 ) → 𝐴 ∈ ℝ )
65 fvoveq1 ( 𝑙 = 𝑚 → ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) = ( 𝑐 ‘ ( 𝑚 𝑃 𝑗 ) ) )
66 oveq2 ( 𝑗 = 𝑘 → ( 𝑚 𝑃 𝑗 ) = ( 𝑚 𝑃 𝑘 ) )
67 66 fveq2d ( 𝑗 = 𝑘 → ( 𝑐 ‘ ( 𝑚 𝑃 𝑗 ) ) = ( 𝑐 ‘ ( 𝑚 𝑃 𝑘 ) ) )
68 65 67 cbvmpov ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑚 𝑃 𝑘 ) ) )
69 nfcv 𝑘 𝑛𝑍 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 )
70 nfcv 𝑗 𝑍
71 nfcv 𝑗 ( ℤ𝑛 )
72 nfcv 𝑗 𝑚
73 nfmpo2 𝑗 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) )
74 nfcv 𝑗 𝑘
75 72 73 74 nfov 𝑗 ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 )
76 71 75 nfiin 𝑗 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 )
77 70 76 nfiun 𝑗 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 )
78 oveq2 ( 𝑗 = 𝑘 → ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
79 78 adantr ( ( 𝑗 = 𝑘𝑖 ∈ ( ℤ𝑛 ) ) → ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
80 79 iineq2dv ( 𝑗 = 𝑘 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
81 oveq1 ( 𝑖 = 𝑚 → ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) = ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
82 81 cbviinv 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) = 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 )
83 82 a1i ( 𝑗 = 𝑘 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) = 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
84 80 83 eqtrd ( 𝑗 = 𝑘 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
85 84 adantr ( ( 𝑗 = 𝑘𝑛𝑍 ) → 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
86 85 iuneq2dv ( 𝑗 = 𝑘 𝑛𝑍 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 ) )
87 69 77 86 cbviin 𝑗 ∈ ℕ 𝑛𝑍 𝑖 ∈ ( ℤ𝑛 ) ( 𝑖 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑗 ) = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 ( 𝑙𝑍 , 𝑗 ∈ ℕ ↦ ( 𝑐 ‘ ( 𝑙 𝑃 𝑗 ) ) ) 𝑘 )
88 fveq2 ( 𝑦 = 𝑟 → ( 𝑐𝑦 ) = ( 𝑐𝑟 ) )
89 id ( 𝑦 = 𝑟𝑦 = 𝑟 )
90 88 89 eleq12d ( 𝑦 = 𝑟 → ( ( 𝑐𝑦 ) ∈ 𝑦 ↔ ( 𝑐𝑟 ) ∈ 𝑟 ) )
91 90 rspccva ( ( ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦𝑟 ∈ ran 𝑃 ) → ( 𝑐𝑟 ) ∈ 𝑟 )
92 91 adantll ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 ) ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝑐𝑟 ) ∈ 𝑟 )
93 61 2 62 63 5 6 64 8 68 87 92 smflimlem5 ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 ) → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) )
94 93 ex ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) ) )
95 94 exlimdv ( 𝜑 → ( ∃ 𝑐𝑦 ∈ ran 𝑃 ( 𝑐𝑦 ) ∈ 𝑦 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) ) )
96 60 95 mpd ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) )