Metamath Proof Explorer


Theorem smflimlem5

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem5.1 ( 𝜑𝑀 ∈ ℤ )
smflimlem5.2 𝑍 = ( ℤ𝑀 )
smflimlem5.3 ( 𝜑𝑆 ∈ SAlg )
smflimlem5.4 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflimlem5.5 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
smflimlem5.6 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
smflimlem5.7 ( 𝜑𝐴 ∈ ℝ )
smflimlem5.8 𝑃 = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
smflimlem5.9 𝐻 = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) )
smflimlem5.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 𝐻 𝑘 )
smflimlem5.11 ( ( 𝜑𝑟 ∈ ran 𝑃 ) → ( 𝐶𝑟 ) ∈ 𝑟 )
Assertion smflimlem5 ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smflimlem5.1 ( 𝜑𝑀 ∈ ℤ )
2 smflimlem5.2 𝑍 = ( ℤ𝑀 )
3 smflimlem5.3 ( 𝜑𝑆 ∈ SAlg )
4 smflimlem5.4 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
5 smflimlem5.5 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ }
6 smflimlem5.6 𝐺 = ( 𝑥𝐷 ↦ ( ⇝ ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
7 smflimlem5.7 ( 𝜑𝐴 ∈ ℝ )
8 smflimlem5.8 𝑃 = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠𝑆 ∣ { 𝑥 ∈ dom ( 𝐹𝑚 ) ∣ ( ( 𝐹𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹𝑚 ) ) } )
9 smflimlem5.9 𝐻 = ( 𝑚𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) )
10 smflimlem5.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) ( 𝑚 𝐻 𝑘 )
11 smflimlem5.11 ( ( 𝜑𝑟 ∈ ran 𝑃 ) → ( 𝐶𝑟 ) ∈ 𝑟 )
12 2 3 4 5 6 7 8 9 10 11 smflimlem2 ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ⊆ ( 𝐷𝐼 ) )
13 1 2 3 4 5 6 7 8 9 10 11 smflimlem4 ( 𝜑 → ( 𝐷𝐼 ) ⊆ { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } )
14 12 13 eqssd ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } = ( 𝐷𝐼 ) )
15 2 3 5 8 9 10 11 smflimlem1 ( 𝜑 → ( 𝐷𝐼 ) ∈ ( 𝑆t 𝐷 ) )
16 14 15 eqeltrd ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐺𝑥 ) ≤ 𝐴 } ∈ ( 𝑆t 𝐷 ) )