Metamath Proof Explorer


Theorem smflimlem5

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem5.1 φM
smflimlem5.2 Z=M
smflimlem5.3 φSSAlg
smflimlem5.4 φF:ZSMblFnS
smflimlem5.5 D=xnZmndomFm|mZFmxdom
smflimlem5.6 G=xDmZFmx
smflimlem5.7 φA
smflimlem5.8 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
smflimlem5.9 H=mZ,kCmPk
smflimlem5.10 I=knZmnmHk
smflimlem5.11 φrranPCrr
Assertion smflimlem5 φxD|GxAS𝑡D

Proof

Step Hyp Ref Expression
1 smflimlem5.1 φM
2 smflimlem5.2 Z=M
3 smflimlem5.3 φSSAlg
4 smflimlem5.4 φF:ZSMblFnS
5 smflimlem5.5 D=xnZmndomFm|mZFmxdom
6 smflimlem5.6 G=xDmZFmx
7 smflimlem5.7 φA
8 smflimlem5.8 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
9 smflimlem5.9 H=mZ,kCmPk
10 smflimlem5.10 I=knZmnmHk
11 smflimlem5.11 φrranPCrr
12 2 3 4 5 6 7 8 9 10 11 smflimlem2 φxD|GxADI
13 1 2 3 4 5 6 7 8 9 10 11 smflimlem4 φDIxD|GxA
14 12 13 eqssd φxD|GxA=DI
15 2 3 5 8 9 10 11 smflimlem1 φDIS𝑡D
16 14 15 eqeltrd φxD|GxAS𝑡D