Metamath Proof Explorer


Theorem smflimlem5

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem5.1 φ M
smflimlem5.2 Z = M
smflimlem5.3 φ S SAlg
smflimlem5.4 φ F : Z SMblFn S
smflimlem5.5 D = x n Z m n dom F m | m Z F m x dom
smflimlem5.6 G = x D m Z F m x
smflimlem5.7 φ A
smflimlem5.8 P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
smflimlem5.9 H = m Z , k C m P k
smflimlem5.10 I = k n Z m n m H k
smflimlem5.11 φ r ran P C r r
Assertion smflimlem5 φ x D | G x A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smflimlem5.1 φ M
2 smflimlem5.2 Z = M
3 smflimlem5.3 φ S SAlg
4 smflimlem5.4 φ F : Z SMblFn S
5 smflimlem5.5 D = x n Z m n dom F m | m Z F m x dom
6 smflimlem5.6 G = x D m Z F m x
7 smflimlem5.7 φ A
8 smflimlem5.8 P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
9 smflimlem5.9 H = m Z , k C m P k
10 smflimlem5.10 I = k n Z m n m H k
11 smflimlem5.11 φ r ran P C r r
12 2 3 4 5 6 7 8 9 10 11 smflimlem2 φ x D | G x A D I
13 1 2 3 4 5 6 7 8 9 10 11 smflimlem4 φ D I x D | G x A
14 12 13 eqssd φ x D | G x A = D I
15 2 3 5 8 9 10 11 smflimlem1 φ D I S 𝑡 D
16 14 15 eqeltrd φ x D | G x A S 𝑡 D