Metamath Proof Explorer


Theorem smflimlem4

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem4.1 φM
smflimlem4.2 Z=M
smflimlem4.3 φSSAlg
smflimlem4.4 φF:ZSMblFnS
smflimlem4.5 D=xnZmndomFm|mZFmxdom
smflimlem4.6 G=xDmZFmx
smflimlem4.7 φA
smflimlem4.8 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
smflimlem4.9 H=mZ,kCmPk
smflimlem4.10 I=knZmnmHk
smflimlem4.11 φrranPCrr
Assertion smflimlem4 φDIxD|GxA

Proof

Step Hyp Ref Expression
1 smflimlem4.1 φM
2 smflimlem4.2 Z=M
3 smflimlem4.3 φSSAlg
4 smflimlem4.4 φF:ZSMblFnS
5 smflimlem4.5 D=xnZmndomFm|mZFmxdom
6 smflimlem4.6 G=xDmZFmx
7 smflimlem4.7 φA
8 smflimlem4.8 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
9 smflimlem4.9 H=mZ,kCmPk
10 smflimlem4.10 I=knZmnmHk
11 smflimlem4.11 φrranPCrr
12 inss1 DID
13 12 a1i φDID
14 13 sselda φxDIxD
15 6 a1i φG=xDmZFmx
16 nfv mφxD
17 nfcv _mF
18 nfcv _zF
19 3 adantr φmZSSAlg
20 4 ffvelcdmda φmZFmSMblFnS
21 eqid domFm=domFm
22 19 20 21 smff φmZFm:domFm
23 22 adantlr φxDmZFm:domFm
24 fveq2 x=zFmx=Fmz
25 24 mpteq2dv x=zmZFmx=mZFmz
26 25 eleq1d x=zmZFmxdommZFmzdom
27 26 cbvrabv xnZmndomFm|mZFmxdom=znZmndomFm|mZFmzdom
28 5 27 eqtri D=znZmndomFm|mZFmzdom
29 simpr φxDxD
30 16 17 18 2 23 28 29 fnlimfvre φxDmZFmx
31 30 elexd φxDmZFmxV
32 15 31 fvmpt2d φxDGx=mZFmx
33 32 30 eqeltrd φxDGx
34 14 33 syldan φxDIGx
35 34 adantr φxDIy+Gx
36 7 adantr φy+A
37 rpre y+y
38 37 adantl φy+y
39 36 38 readdcld φy+A+y
40 39 adantlr φxDIy+A+y
41 nfv mφxDIy+
42 rphalfcl y+y2+
43 rpgtrecnn y2+k1k<y2
44 42 43 syl y+k1k<y2
45 44 adantl φxDIy+k1k<y2
46 3 ad4antr φxDIy+k1k<y2SSAlg
47 20 adantlr φxDImZFmSMblFnS
48 47 ad5ant15 φxDIy+k1k<y2mZFmSMblFnS
49 7 adantr φxDIA
50 49 ad3antrrr φxDIy+k1k<y2A
51 nfcv _kZ
52 nfcv _jZ
53 nfcv _jsS|xdomFm|Fmx<A+1k=sdomFm
54 nfcv _ksS|zdomFm|Fmz<A+1j=sdomFm
55 24 breq1d x=zFmx<A+1kFmz<A+1k
56 55 cbvrabv xdomFm|Fmx<A+1k=zdomFm|Fmz<A+1k
57 56 a1i k=jxdomFm|Fmx<A+1k=zdomFm|Fmz<A+1k
58 oveq2 k=j1k=1j
59 58 oveq2d k=jA+1k=A+1j
60 59 breq2d k=jFmz<A+1kFmz<A+1j
61 60 rabbidv k=jzdomFm|Fmz<A+1k=zdomFm|Fmz<A+1j
62 57 61 eqtrd k=jxdomFm|Fmx<A+1k=zdomFm|Fmz<A+1j
63 62 eqeq1d k=jxdomFm|Fmx<A+1k=sdomFmzdomFm|Fmz<A+1j=sdomFm
64 63 rabbidv k=jsS|xdomFm|Fmx<A+1k=sdomFm=sS|zdomFm|Fmz<A+1j=sdomFm
65 51 52 53 54 64 cbvmpo2 mZ,ksS|xdomFm|Fmx<A+1k=sdomFm=mZ,jsS|zdomFm|Fmz<A+1j=sdomFm
66 8 65 eqtri P=mZ,jsS|zdomFm|Fmz<A+1j=sdomFm
67 nfcv _jCmPk
68 nfcv _kCmPj
69 oveq2 k=jmPk=mPj
70 69 fveq2d k=jCmPk=CmPj
71 51 52 67 68 70 cbvmpo2 mZ,kCmPk=mZ,jCmPj
72 9 71 eqtri H=mZ,jCmPj
73 simpll k=jnZmnk=j
74 73 oveq2d k=jnZmnmHk=mHj
75 74 iineq2dv k=jnZmnmHk=mnmHj
76 75 iuneq2dv k=jnZmnmHk=nZmnmHj
77 76 cbviinv knZmnmHk=jnZmnmHj
78 10 77 eqtri I=jnZmnmHj
79 11 adantlr φxDIrranPCrr
80 79 ad5ant15 φxDIy+k1k<y2rranPCrr
81 simp-4r φxDIy+k1k<y2xDI
82 simplr φxDIy+k1k<y2k
83 42 ad3antlr φxDIy+k1k<y2y2+
84 simpr φxDIy+k1k<y21k<y2
85 2 46 48 28 50 66 72 78 80 81 82 83 84 smflimlem3 φxDIy+k1k<y2mZimxdomFiFix<A+y2
86 85 rexlimdva2 φxDIy+k1k<y2mZimxdomFiFix<A+y2
87 45 86 mpd φxDIy+mZimxdomFiFix<A+y2
88 nfv iφxDIy+
89 nfcv _iF
90 nfcv _xF
91 1 ad2antrr φxDIy+M
92 eleq1w m=imZiZ
93 92 anbi2d m=iφmZφiZ
94 fveq2 m=iFm=Fi
95 94 dmeqd m=idomFm=domFi
96 94 95 feq12d m=iFm:domFmFi:domFi
97 93 96 imbi12d m=iφmZFm:domFmφiZFi:domFi
98 97 22 chvarvv φiZFi:domFi
99 98 ad4ant14 φxDIy+iZFi:domFi
100 fveq2 m=lFm=Fl
101 100 dmeqd m=ldomFm=domFl
102 101 cbviinv mndomFm=lndomFl
103 102 a1i nZmndomFm=lndomFl
104 103 iuneq2i nZmndomFm=nZlndomFl
105 fveq2 n=mn=m
106 105 iineq1d n=mlndomFl=lmdomFl
107 fveq2 l=iFl=Fi
108 107 dmeqd l=idomFl=domFi
109 108 cbviinv lmdomFl=imdomFi
110 109 a1i n=mlmdomFl=imdomFi
111 106 110 eqtrd n=mlndomFl=imdomFi
112 111 cbviunv nZlndomFl=mZimdomFi
113 104 112 eqtri nZmndomFm=mZimdomFi
114 113 rabeqi xnZmndomFm|mZFmxdom=xmZimdomFi|mZFmxdom
115 fveq2 i=mFi=Fm
116 115 fveq1d i=mFix=Fmx
117 116 cbvmptv iZFix=mZFmx
118 117 eqcomi mZFmx=iZFix
119 118 eleq1i mZFmxdomiZFixdom
120 119 rabbii xmZimdomFi|mZFmxdom=xmZimdomFi|iZFixdom
121 5 114 120 3eqtri D=xmZimdomFi|iZFixdom
122 118 fveq2i mZFmx=iZFix
123 122 mpteq2i xDmZFmx=xDiZFix
124 6 123 eqtri G=xDiZFix
125 14 adantr φxDIy+xD
126 42 adantl φxDIy+y2+
127 88 89 90 91 2 99 121 124 125 126 fnlimabslt φxDIy+mZimFixFixGx<y2
128 35 adantr φxDIy+FixGx
129 simpr φxDIy+FixFix
130 128 129 resubcld φxDIy+FixGxFix
131 130 adantrr φxDIy+FixFixGx<y2GxFix
132 130 recnd φxDIy+FixGxFix
133 132 abscld φxDIy+FixGxFix
134 133 adantrr φxDIy+FixFixGx<y2GxFix
135 37 rehalfcld y+y2
136 135 ad2antlr φxDIy+FixFixGx<y2y2
137 131 leabsd φxDIy+FixFixGx<y2GxFixGxFix
138 34 recnd φxDIGx
139 138 adantr φxDIFixGx
140 recn FixFix
141 140 adantl φxDIFixFix
142 139 141 abssubd φxDIFixGxFix=FixGx
143 142 adantrr φxDIFixFixGx<y2GxFix=FixGx
144 simprr φxDIFixFixGx<y2FixGx<y2
145 143 144 eqbrtrd φxDIFixFixGx<y2GxFix<y2
146 145 adantlr φxDIy+FixFixGx<y2GxFix<y2
147 131 134 136 137 146 lelttrd φxDIy+FixFixGx<y2GxFix<y2
148 35 adantr φxDIy+FixFixGx<y2Gx
149 simprl φxDIy+FixFixGx<y2Fix
150 148 149 136 ltsubadd2d φxDIy+FixFixGx<y2GxFix<y2Gx<Fix+y2
151 147 150 mpbid φxDIy+FixFixGx<y2Gx<Fix+y2
152 151 ex φxDIy+FixFixGx<y2Gx<Fix+y2
153 152 ad2antrr φxDIy+mZimFixFixGx<y2Gx<Fix+y2
154 153 ralimdva φxDIy+mZimFixFixGx<y2imGx<Fix+y2
155 154 ex φxDIy+mZimFixFixGx<y2imGx<Fix+y2
156 41 155 reximdai φxDIy+mZimFixFixGx<y2mZimGx<Fix+y2
157 127 156 mpd φxDIy+mZimGx<Fix+y2
158 115 dmeqd i=mdomFi=domFm
159 158 eleq2d i=mxdomFixdomFm
160 116 breq1d i=mFix<A+y2Fmx<A+y2
161 159 160 anbi12d i=mxdomFiFix<A+y2xdomFmFmx<A+y2
162 116 oveq1d i=mFix+y2=Fmx+y2
163 162 breq2d i=mGx<Fix+y2Gx<Fmx+y2
164 41 2 87 157 161 163 rexanuz3 φxDIy+mZxdomFmFmx<A+y2Gx<Fmx+y2
165 df-3an xdomFmFmx<A+y2Gx<Fmx+y2xdomFmFmx<A+y2Gx<Fmx+y2
166 3ancomb xdomFmFmx<A+y2Gx<Fmx+y2xdomFmGx<Fmx+y2Fmx<A+y2
167 165 166 bitr3i xdomFmFmx<A+y2Gx<Fmx+y2xdomFmGx<Fmx+y2Fmx<A+y2
168 167 rexbii mZxdomFmFmx<A+y2Gx<Fmx+y2mZxdomFmGx<Fmx+y2Fmx<A+y2
169 164 168 sylib φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2
170 35 ad2antrr φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Gx
171 22 3adant3 φmZxdomFmFm:domFm
172 simp3 φmZxdomFmxdomFm
173 171 172 ffvelcdmd φmZxdomFmFmx
174 173 ad4ant134 φy+mZxdomFmFmx
175 simpllr φy+mZxdomFmy+
176 175 135 syl φy+mZxdomFmy2
177 174 176 readdcld φy+mZxdomFmFmx+y2
178 177 adantl3r φxDIy+mZxdomFmFmx+y2
179 178 3ad2antr1 φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Fmx+y2
180 rehalfcl yy2
181 38 180 syl φy+y2
182 36 181 jca φy+Ay2
183 readdcl Ay2A+y2
184 182 183 syl φy+A+y2
185 184 181 readdcld φy+A+y2+y2
186 185 ad5ant13 φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2A+y2+y2
187 simpr2 φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Gx<Fmx+y2
188 174 adantrr φy+mZxdomFmFmx<A+y2Fmx
189 184 ad2antrr φy+mZxdomFmFmx<A+y2A+y2
190 176 adantrr φy+mZxdomFmFmx<A+y2y2
191 simprr φy+mZxdomFmFmx<A+y2Fmx<A+y2
192 188 189 190 191 ltadd1dd φy+mZxdomFmFmx<A+y2Fmx+y2<A+y2+y2
193 192 adantl3r φxDIy+mZxdomFmFmx<A+y2Fmx+y2<A+y2+y2
194 193 3adantr2 φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Fmx+y2<A+y2+y2
195 170 179 186 187 194 lttrd φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Gx<A+y2+y2
196 36 recnd φy+A
197 181 recnd φy+y2
198 196 197 197 addassd φy+A+y2+y2=A+y2+y2
199 37 recnd y+y
200 2halves yy2+y2=y
201 199 200 syl y+y2+y2=y
202 201 oveq2d y+A+y2+y2=A+y
203 202 adantl φy+A+y2+y2=A+y
204 198 203 eqtrd φy+A+y2+y2=A+y
205 204 ad5ant13 φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2A+y2+y2=A+y
206 195 205 breqtrd φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Gx<A+y
207 206 rexlimdva2 φxDIy+mZxdomFmGx<Fmx+y2Fmx<A+y2Gx<A+y
208 169 207 mpd φxDIy+Gx<A+y
209 35 40 208 ltled φxDIy+GxA+y
210 209 ralrimiva φxDIy+GxA+y
211 alrple GxAGxAy+GxA+y
212 34 49 211 syl2anc φxDIGxAy+GxA+y
213 210 212 mpbird φxDIGxA
214 13 213 ssrabdv φDIxD|GxA