| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimlem4.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
smflimlem4.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
smflimlem4.3 |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smflimlem4.4 |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 5 |
|
smflimlem4.5 |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 6 |
|
smflimlem4.6 |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 7 |
|
smflimlem4.7 |
|- ( ph -> A e. RR ) |
| 8 |
|
smflimlem4.8 |
|- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 9 |
|
smflimlem4.9 |
|- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) |
| 10 |
|
smflimlem4.10 |
|- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) |
| 11 |
|
smflimlem4.11 |
|- ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r ) |
| 12 |
|
inss1 |
|- ( D i^i I ) C_ D |
| 13 |
12
|
a1i |
|- ( ph -> ( D i^i I ) C_ D ) |
| 14 |
13
|
sselda |
|- ( ( ph /\ x e. ( D i^i I ) ) -> x e. D ) |
| 15 |
6
|
a1i |
|- ( ph -> G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) ) |
| 16 |
|
nfv |
|- F/ m ( ph /\ x e. D ) |
| 17 |
|
nfcv |
|- F/_ m F |
| 18 |
|
nfcv |
|- F/_ z F |
| 19 |
3
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
| 20 |
4
|
ffvelcdmda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 21 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
| 22 |
19 20 21
|
smff |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 23 |
22
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 24 |
|
fveq2 |
|- ( x = z -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` z ) ) |
| 25 |
24
|
mpteq2dv |
|- ( x = z -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
| 26 |
25
|
eleq1d |
|- ( x = z -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` z ) ) e. dom ~~> ) ) |
| 27 |
26
|
cbvrabv |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { z e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` z ) ) e. dom ~~> } |
| 28 |
5 27
|
eqtri |
|- D = { z e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` z ) ) e. dom ~~> } |
| 29 |
|
simpr |
|- ( ( ph /\ x e. D ) -> x e. D ) |
| 30 |
16 17 18 2 23 28 29
|
fnlimfvre |
|- ( ( ph /\ x e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |
| 31 |
30
|
elexd |
|- ( ( ph /\ x e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. _V ) |
| 32 |
15 31
|
fvmpt2d |
|- ( ( ph /\ x e. D ) -> ( G ` x ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 33 |
32 30
|
eqeltrd |
|- ( ( ph /\ x e. D ) -> ( G ` x ) e. RR ) |
| 34 |
14 33
|
syldan |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( G ` x ) e. RR ) |
| 35 |
34
|
adantr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( G ` x ) e. RR ) |
| 36 |
7
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> A e. RR ) |
| 37 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> y e. RR ) |
| 39 |
36 38
|
readdcld |
|- ( ( ph /\ y e. RR+ ) -> ( A + y ) e. RR ) |
| 40 |
39
|
adantlr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( A + y ) e. RR ) |
| 41 |
|
nfv |
|- F/ m ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) |
| 42 |
|
rphalfcl |
|- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
| 43 |
|
rpgtrecnn |
|- ( ( y / 2 ) e. RR+ -> E. k e. NN ( 1 / k ) < ( y / 2 ) ) |
| 44 |
42 43
|
syl |
|- ( y e. RR+ -> E. k e. NN ( 1 / k ) < ( y / 2 ) ) |
| 45 |
44
|
adantl |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. k e. NN ( 1 / k ) < ( y / 2 ) ) |
| 46 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> S e. SAlg ) |
| 47 |
20
|
adantlr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 48 |
47
|
ad5ant15 |
|- ( ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 49 |
7
|
adantr |
|- ( ( ph /\ x e. ( D i^i I ) ) -> A e. RR ) |
| 50 |
49
|
ad3antrrr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> A e. RR ) |
| 51 |
|
nfcv |
|- F/_ k Z |
| 52 |
|
nfcv |
|- F/_ j Z |
| 53 |
|
nfcv |
|- F/_ j { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
| 54 |
|
nfcv |
|- F/_ k { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } |
| 55 |
24
|
breq1d |
|- ( x = z -> ( ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) <-> ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) ) ) |
| 56 |
55
|
cbvrabv |
|- { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) } |
| 57 |
56
|
a1i |
|- ( k = j -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) } ) |
| 58 |
|
oveq2 |
|- ( k = j -> ( 1 / k ) = ( 1 / j ) ) |
| 59 |
58
|
oveq2d |
|- ( k = j -> ( A + ( 1 / k ) ) = ( A + ( 1 / j ) ) ) |
| 60 |
59
|
breq2d |
|- ( k = j -> ( ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) <-> ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) ) ) |
| 61 |
60
|
rabbidv |
|- ( k = j -> { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } ) |
| 62 |
57 61
|
eqtrd |
|- ( k = j -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } ) |
| 63 |
62
|
eqeq1d |
|- ( k = j -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) <-> { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
| 64 |
63
|
rabbidv |
|- ( k = j -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 65 |
51 52 53 54 64
|
cbvmpo2 |
|- ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) = ( m e. Z , j e. NN |-> { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 66 |
8 65
|
eqtri |
|- P = ( m e. Z , j e. NN |-> { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
| 67 |
|
nfcv |
|- F/_ j ( C ` ( m P k ) ) |
| 68 |
|
nfcv |
|- F/_ k ( C ` ( m P j ) ) |
| 69 |
|
oveq2 |
|- ( k = j -> ( m P k ) = ( m P j ) ) |
| 70 |
69
|
fveq2d |
|- ( k = j -> ( C ` ( m P k ) ) = ( C ` ( m P j ) ) ) |
| 71 |
51 52 67 68 70
|
cbvmpo2 |
|- ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) = ( m e. Z , j e. NN |-> ( C ` ( m P j ) ) ) |
| 72 |
9 71
|
eqtri |
|- H = ( m e. Z , j e. NN |-> ( C ` ( m P j ) ) ) |
| 73 |
|
simpll |
|- ( ( ( k = j /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> k = j ) |
| 74 |
73
|
oveq2d |
|- ( ( ( k = j /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( m H k ) = ( m H j ) ) |
| 75 |
74
|
iineq2dv |
|- ( ( k = j /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ m e. ( ZZ>= ` n ) ( m H j ) ) |
| 76 |
75
|
iuneq2dv |
|- ( k = j -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H j ) ) |
| 77 |
76
|
cbviinv |
|- |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ j e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H j ) |
| 78 |
10 77
|
eqtri |
|- I = |^|_ j e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H j ) |
| 79 |
11
|
adantlr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ r e. ran P ) -> ( C ` r ) e. r ) |
| 80 |
79
|
ad5ant15 |
|- ( ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) /\ r e. ran P ) -> ( C ` r ) e. r ) |
| 81 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> x e. ( D i^i I ) ) |
| 82 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> k e. NN ) |
| 83 |
42
|
ad3antlr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> ( y / 2 ) e. RR+ ) |
| 84 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> ( 1 / k ) < ( y / 2 ) ) |
| 85 |
2 46 48 28 50 66 72 78 80 81 82 83 84
|
smflimlem3 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 86 |
85
|
rexlimdva2 |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( E. k e. NN ( 1 / k ) < ( y / 2 ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) ) ) |
| 87 |
45 86
|
mpd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 88 |
|
nfv |
|- F/ i ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) |
| 89 |
|
nfcv |
|- F/_ i F |
| 90 |
|
nfcv |
|- F/_ x F |
| 91 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> M e. ZZ ) |
| 92 |
|
eleq1w |
|- ( m = i -> ( m e. Z <-> i e. Z ) ) |
| 93 |
92
|
anbi2d |
|- ( m = i -> ( ( ph /\ m e. Z ) <-> ( ph /\ i e. Z ) ) ) |
| 94 |
|
fveq2 |
|- ( m = i -> ( F ` m ) = ( F ` i ) ) |
| 95 |
94
|
dmeqd |
|- ( m = i -> dom ( F ` m ) = dom ( F ` i ) ) |
| 96 |
94 95
|
feq12d |
|- ( m = i -> ( ( F ` m ) : dom ( F ` m ) --> RR <-> ( F ` i ) : dom ( F ` i ) --> RR ) ) |
| 97 |
93 96
|
imbi12d |
|- ( m = i -> ( ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) <-> ( ( ph /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) ) ) |
| 98 |
97 22
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) |
| 99 |
98
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) |
| 100 |
|
fveq2 |
|- ( m = l -> ( F ` m ) = ( F ` l ) ) |
| 101 |
100
|
dmeqd |
|- ( m = l -> dom ( F ` m ) = dom ( F ` l ) ) |
| 102 |
101
|
cbviinv |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) |
| 103 |
102
|
a1i |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) ) |
| 104 |
103
|
iuneq2i |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ n e. Z |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) |
| 105 |
|
fveq2 |
|- ( n = m -> ( ZZ>= ` n ) = ( ZZ>= ` m ) ) |
| 106 |
105
|
iineq1d |
|- ( n = m -> |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = |^|_ l e. ( ZZ>= ` m ) dom ( F ` l ) ) |
| 107 |
|
fveq2 |
|- ( l = i -> ( F ` l ) = ( F ` i ) ) |
| 108 |
107
|
dmeqd |
|- ( l = i -> dom ( F ` l ) = dom ( F ` i ) ) |
| 109 |
108
|
cbviinv |
|- |^|_ l e. ( ZZ>= ` m ) dom ( F ` l ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
| 110 |
109
|
a1i |
|- ( n = m -> |^|_ l e. ( ZZ>= ` m ) dom ( F ` l ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) ) |
| 111 |
106 110
|
eqtrd |
|- ( n = m -> |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) ) |
| 112 |
111
|
cbviunv |
|- U_ n e. Z |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
| 113 |
104 112
|
eqtri |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
| 114 |
113
|
rabeqi |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 115 |
|
fveq2 |
|- ( i = m -> ( F ` i ) = ( F ` m ) ) |
| 116 |
115
|
fveq1d |
|- ( i = m -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) |
| 117 |
116
|
cbvmptv |
|- ( i e. Z |-> ( ( F ` i ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` x ) ) |
| 118 |
117
|
eqcomi |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( i e. Z |-> ( ( F ` i ) ` x ) ) |
| 119 |
118
|
eleq1i |
|- ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( i e. Z |-> ( ( F ` i ) ` x ) ) e. dom ~~> ) |
| 120 |
119
|
rabbii |
|- { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( i e. Z |-> ( ( F ` i ) ` x ) ) e. dom ~~> } |
| 121 |
5 114 120
|
3eqtri |
|- D = { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( i e. Z |-> ( ( F ` i ) ` x ) ) e. dom ~~> } |
| 122 |
118
|
fveq2i |
|- ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( i e. Z |-> ( ( F ` i ) ` x ) ) ) |
| 123 |
122
|
mpteq2i |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( x e. D |-> ( ~~> ` ( i e. Z |-> ( ( F ` i ) ` x ) ) ) ) |
| 124 |
6 123
|
eqtri |
|- G = ( x e. D |-> ( ~~> ` ( i e. Z |-> ( ( F ` i ) ` x ) ) ) ) |
| 125 |
14
|
adantr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> x e. D ) |
| 126 |
42
|
adantl |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( y / 2 ) e. RR+ ) |
| 127 |
88 89 90 91 2 99 121 124 125 126
|
fnlimabslt |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) |
| 128 |
35
|
adantr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( G ` x ) e. RR ) |
| 129 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( F ` i ) ` x ) e. RR ) |
| 130 |
128 129
|
resubcld |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) e. RR ) |
| 131 |
130
|
adantrr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) e. RR ) |
| 132 |
130
|
recnd |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) e. CC ) |
| 133 |
132
|
abscld |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) e. RR ) |
| 134 |
133
|
adantrr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) e. RR ) |
| 135 |
37
|
rehalfcld |
|- ( y e. RR+ -> ( y / 2 ) e. RR ) |
| 136 |
135
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( y / 2 ) e. RR ) |
| 137 |
131
|
leabsd |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) <_ ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) ) |
| 138 |
34
|
recnd |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( G ` x ) e. CC ) |
| 139 |
138
|
adantr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( G ` x ) e. CC ) |
| 140 |
|
recn |
|- ( ( ( F ` i ) ` x ) e. RR -> ( ( F ` i ) ` x ) e. CC ) |
| 141 |
140
|
adantl |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( F ` i ) ` x ) e. CC ) |
| 142 |
139 141
|
abssubd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) = ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) ) |
| 143 |
142
|
adantrr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) = ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) ) |
| 144 |
|
simprr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) |
| 145 |
143 144
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) < ( y / 2 ) ) |
| 146 |
145
|
adantlr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) < ( y / 2 ) ) |
| 147 |
131 134 136 137 146
|
lelttrd |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) < ( y / 2 ) ) |
| 148 |
35
|
adantr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( G ` x ) e. RR ) |
| 149 |
|
simprl |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( F ` i ) ` x ) e. RR ) |
| 150 |
148 149 136
|
ltsubadd2d |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( ( G ` x ) - ( ( F ` i ) ` x ) ) < ( y / 2 ) <-> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
| 151 |
147 150
|
mpbid |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) |
| 152 |
151
|
ex |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
| 153 |
152
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ i e. ( ZZ>= ` m ) ) -> ( ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
| 154 |
153
|
ralimdva |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) -> ( A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
| 155 |
154
|
ex |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( m e. Z -> ( A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) ) |
| 156 |
41 155
|
reximdai |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( E. m e. Z A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
| 157 |
127 156
|
mpd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) |
| 158 |
115
|
dmeqd |
|- ( i = m -> dom ( F ` i ) = dom ( F ` m ) ) |
| 159 |
158
|
eleq2d |
|- ( i = m -> ( x e. dom ( F ` i ) <-> x e. dom ( F ` m ) ) ) |
| 160 |
116
|
breq1d |
|- ( i = m -> ( ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) <-> ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 161 |
159 160
|
anbi12d |
|- ( i = m -> ( ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) <-> ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) ) |
| 162 |
116
|
oveq1d |
|- ( i = m -> ( ( ( F ` i ) ` x ) + ( y / 2 ) ) = ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) |
| 163 |
162
|
breq2d |
|- ( i = m -> ( ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) <-> ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) ) |
| 164 |
41 2 87 157 161 163
|
rexanuz3 |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) ) |
| 165 |
|
df-3an |
|- ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) ) |
| 166 |
|
3ancomb |
|- ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 167 |
165 166
|
bitr3i |
|- ( ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 168 |
167
|
rexbii |
|- ( E. m e. Z ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> E. m e. Z ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 169 |
164 168
|
sylib |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
| 170 |
35
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) e. RR ) |
| 171 |
22
|
3adant3 |
|- ( ( ph /\ m e. Z /\ x e. dom ( F ` m ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 172 |
|
simp3 |
|- ( ( ph /\ m e. Z /\ x e. dom ( F ` m ) ) -> x e. dom ( F ` m ) ) |
| 173 |
171 172
|
ffvelcdmd |
|- ( ( ph /\ m e. Z /\ x e. dom ( F ` m ) ) -> ( ( F ` m ) ` x ) e. RR ) |
| 174 |
173
|
ad4ant134 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( ( F ` m ) ` x ) e. RR ) |
| 175 |
|
simpllr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> y e. RR+ ) |
| 176 |
175 135
|
syl |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( y / 2 ) e. RR ) |
| 177 |
174 176
|
readdcld |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) e. RR ) |
| 178 |
177
|
adantl3r |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) e. RR ) |
| 179 |
178
|
3ad2antr1 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) e. RR ) |
| 180 |
|
rehalfcl |
|- ( y e. RR -> ( y / 2 ) e. RR ) |
| 181 |
38 180
|
syl |
|- ( ( ph /\ y e. RR+ ) -> ( y / 2 ) e. RR ) |
| 182 |
36 181
|
jca |
|- ( ( ph /\ y e. RR+ ) -> ( A e. RR /\ ( y / 2 ) e. RR ) ) |
| 183 |
|
readdcl |
|- ( ( A e. RR /\ ( y / 2 ) e. RR ) -> ( A + ( y / 2 ) ) e. RR ) |
| 184 |
182 183
|
syl |
|- ( ( ph /\ y e. RR+ ) -> ( A + ( y / 2 ) ) e. RR ) |
| 185 |
184 181
|
readdcld |
|- ( ( ph /\ y e. RR+ ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) e. RR ) |
| 186 |
185
|
ad5ant13 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) e. RR ) |
| 187 |
|
simpr2 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) |
| 188 |
174
|
adantrr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( F ` m ) ` x ) e. RR ) |
| 189 |
184
|
ad2antrr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( A + ( y / 2 ) ) e. RR ) |
| 190 |
176
|
adantrr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( y / 2 ) e. RR ) |
| 191 |
|
simprr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) |
| 192 |
188 189 190 191
|
ltadd1dd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
| 193 |
192
|
adantl3r |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
| 194 |
193
|
3adantr2 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
| 195 |
170 179 186 187 194
|
lttrd |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
| 196 |
36
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> A e. CC ) |
| 197 |
181
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> ( y / 2 ) e. CC ) |
| 198 |
196 197 197
|
addassd |
|- ( ( ph /\ y e. RR+ ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) = ( A + ( ( y / 2 ) + ( y / 2 ) ) ) ) |
| 199 |
37
|
recnd |
|- ( y e. RR+ -> y e. CC ) |
| 200 |
|
2halves |
|- ( y e. CC -> ( ( y / 2 ) + ( y / 2 ) ) = y ) |
| 201 |
199 200
|
syl |
|- ( y e. RR+ -> ( ( y / 2 ) + ( y / 2 ) ) = y ) |
| 202 |
201
|
oveq2d |
|- ( y e. RR+ -> ( A + ( ( y / 2 ) + ( y / 2 ) ) ) = ( A + y ) ) |
| 203 |
202
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> ( A + ( ( y / 2 ) + ( y / 2 ) ) ) = ( A + y ) ) |
| 204 |
198 203
|
eqtrd |
|- ( ( ph /\ y e. RR+ ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) = ( A + y ) ) |
| 205 |
204
|
ad5ant13 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) = ( A + y ) ) |
| 206 |
195 205
|
breqtrd |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) < ( A + y ) ) |
| 207 |
206
|
rexlimdva2 |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( E. m e. Z ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) -> ( G ` x ) < ( A + y ) ) ) |
| 208 |
169 207
|
mpd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( G ` x ) < ( A + y ) ) |
| 209 |
35 40 208
|
ltled |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( G ` x ) <_ ( A + y ) ) |
| 210 |
209
|
ralrimiva |
|- ( ( ph /\ x e. ( D i^i I ) ) -> A. y e. RR+ ( G ` x ) <_ ( A + y ) ) |
| 211 |
|
alrple |
|- ( ( ( G ` x ) e. RR /\ A e. RR ) -> ( ( G ` x ) <_ A <-> A. y e. RR+ ( G ` x ) <_ ( A + y ) ) ) |
| 212 |
34 49 211
|
syl2anc |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( ( G ` x ) <_ A <-> A. y e. RR+ ( G ` x ) <_ ( A + y ) ) ) |
| 213 |
210 212
|
mpbird |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( G ` x ) <_ A ) |
| 214 |
13 213
|
ssrabdv |
|- ( ph -> ( D i^i I ) C_ { x e. D | ( G ` x ) <_ A } ) |