Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem4.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
smflimlem4.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
smflimlem4.3 |
|- ( ph -> S e. SAlg ) |
4 |
|
smflimlem4.4 |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
5 |
|
smflimlem4.5 |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
6 |
|
smflimlem4.6 |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
7 |
|
smflimlem4.7 |
|- ( ph -> A e. RR ) |
8 |
|
smflimlem4.8 |
|- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
9 |
|
smflimlem4.9 |
|- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) |
10 |
|
smflimlem4.10 |
|- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) |
11 |
|
smflimlem4.11 |
|- ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r ) |
12 |
|
inss1 |
|- ( D i^i I ) C_ D |
13 |
12
|
a1i |
|- ( ph -> ( D i^i I ) C_ D ) |
14 |
13
|
sselda |
|- ( ( ph /\ x e. ( D i^i I ) ) -> x e. D ) |
15 |
6
|
a1i |
|- ( ph -> G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) ) |
16 |
|
nfv |
|- F/ m ( ph /\ x e. D ) |
17 |
|
nfcv |
|- F/_ m F |
18 |
|
nfcv |
|- F/_ z F |
19 |
3
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
20 |
4
|
ffvelrnda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
21 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
22 |
19 20 21
|
smff |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
23 |
22
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
24 |
|
fveq2 |
|- ( x = z -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` z ) ) |
25 |
24
|
mpteq2dv |
|- ( x = z -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
26 |
25
|
eleq1d |
|- ( x = z -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` z ) ) e. dom ~~> ) ) |
27 |
26
|
cbvrabv |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { z e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` z ) ) e. dom ~~> } |
28 |
5 27
|
eqtri |
|- D = { z e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` z ) ) e. dom ~~> } |
29 |
|
simpr |
|- ( ( ph /\ x e. D ) -> x e. D ) |
30 |
16 17 18 2 23 28 29
|
fnlimfvre |
|- ( ( ph /\ x e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |
31 |
30
|
elexd |
|- ( ( ph /\ x e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. _V ) |
32 |
15 31
|
fvmpt2d |
|- ( ( ph /\ x e. D ) -> ( G ` x ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
33 |
32 30
|
eqeltrd |
|- ( ( ph /\ x e. D ) -> ( G ` x ) e. RR ) |
34 |
14 33
|
syldan |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( G ` x ) e. RR ) |
35 |
34
|
adantr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( G ` x ) e. RR ) |
36 |
7
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> A e. RR ) |
37 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
38 |
37
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> y e. RR ) |
39 |
36 38
|
readdcld |
|- ( ( ph /\ y e. RR+ ) -> ( A + y ) e. RR ) |
40 |
39
|
adantlr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( A + y ) e. RR ) |
41 |
|
nfv |
|- F/ m ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) |
42 |
|
rphalfcl |
|- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
43 |
|
rpgtrecnn |
|- ( ( y / 2 ) e. RR+ -> E. k e. NN ( 1 / k ) < ( y / 2 ) ) |
44 |
42 43
|
syl |
|- ( y e. RR+ -> E. k e. NN ( 1 / k ) < ( y / 2 ) ) |
45 |
44
|
adantl |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. k e. NN ( 1 / k ) < ( y / 2 ) ) |
46 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> S e. SAlg ) |
47 |
20
|
adantlr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
48 |
47
|
ad5ant15 |
|- ( ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
49 |
7
|
adantr |
|- ( ( ph /\ x e. ( D i^i I ) ) -> A e. RR ) |
50 |
49
|
ad3antrrr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> A e. RR ) |
51 |
|
nfcv |
|- F/_ k Z |
52 |
|
nfcv |
|- F/_ j Z |
53 |
|
nfcv |
|- F/_ j { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
54 |
|
nfcv |
|- F/_ k { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } |
55 |
24
|
breq1d |
|- ( x = z -> ( ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) <-> ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) ) ) |
56 |
55
|
cbvrabv |
|- { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) } |
57 |
56
|
a1i |
|- ( k = j -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) } ) |
58 |
|
oveq2 |
|- ( k = j -> ( 1 / k ) = ( 1 / j ) ) |
59 |
58
|
oveq2d |
|- ( k = j -> ( A + ( 1 / k ) ) = ( A + ( 1 / j ) ) ) |
60 |
59
|
breq2d |
|- ( k = j -> ( ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) <-> ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) ) ) |
61 |
60
|
rabbidv |
|- ( k = j -> { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } ) |
62 |
57 61
|
eqtrd |
|- ( k = j -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } ) |
63 |
62
|
eqeq1d |
|- ( k = j -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) <-> { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) ) ) |
64 |
63
|
rabbidv |
|- ( k = j -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
65 |
51 52 53 54 64
|
cbvmpo2 |
|- ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) = ( m e. Z , j e. NN |-> { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
66 |
8 65
|
eqtri |
|- P = ( m e. Z , j e. NN |-> { s e. S | { z e. dom ( F ` m ) | ( ( F ` m ) ` z ) < ( A + ( 1 / j ) ) } = ( s i^i dom ( F ` m ) ) } ) |
67 |
|
nfcv |
|- F/_ j ( C ` ( m P k ) ) |
68 |
|
nfcv |
|- F/_ k ( C ` ( m P j ) ) |
69 |
|
oveq2 |
|- ( k = j -> ( m P k ) = ( m P j ) ) |
70 |
69
|
fveq2d |
|- ( k = j -> ( C ` ( m P k ) ) = ( C ` ( m P j ) ) ) |
71 |
51 52 67 68 70
|
cbvmpo2 |
|- ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) = ( m e. Z , j e. NN |-> ( C ` ( m P j ) ) ) |
72 |
9 71
|
eqtri |
|- H = ( m e. Z , j e. NN |-> ( C ` ( m P j ) ) ) |
73 |
|
simpll |
|- ( ( ( k = j /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> k = j ) |
74 |
73
|
oveq2d |
|- ( ( ( k = j /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( m H k ) = ( m H j ) ) |
75 |
74
|
iineq2dv |
|- ( ( k = j /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ m e. ( ZZ>= ` n ) ( m H j ) ) |
76 |
75
|
iuneq2dv |
|- ( k = j -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H j ) ) |
77 |
76
|
cbviinv |
|- |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ j e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H j ) |
78 |
10 77
|
eqtri |
|- I = |^|_ j e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H j ) |
79 |
11
|
adantlr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ r e. ran P ) -> ( C ` r ) e. r ) |
80 |
79
|
ad5ant15 |
|- ( ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) /\ r e. ran P ) -> ( C ` r ) e. r ) |
81 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> x e. ( D i^i I ) ) |
82 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> k e. NN ) |
83 |
42
|
ad3antlr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> ( y / 2 ) e. RR+ ) |
84 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> ( 1 / k ) < ( y / 2 ) ) |
85 |
2 46 48 28 50 66 72 78 80 81 82 83 84
|
smflimlem3 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ k e. NN ) /\ ( 1 / k ) < ( y / 2 ) ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) ) |
86 |
85
|
rexlimdva2 |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( E. k e. NN ( 1 / k ) < ( y / 2 ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) ) ) |
87 |
45 86
|
mpd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) ) |
88 |
|
nfv |
|- F/ i ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) |
89 |
|
nfcv |
|- F/_ i F |
90 |
|
nfcv |
|- F/_ x F |
91 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> M e. ZZ ) |
92 |
|
eleq1w |
|- ( m = i -> ( m e. Z <-> i e. Z ) ) |
93 |
92
|
anbi2d |
|- ( m = i -> ( ( ph /\ m e. Z ) <-> ( ph /\ i e. Z ) ) ) |
94 |
|
fveq2 |
|- ( m = i -> ( F ` m ) = ( F ` i ) ) |
95 |
94
|
dmeqd |
|- ( m = i -> dom ( F ` m ) = dom ( F ` i ) ) |
96 |
94 95
|
feq12d |
|- ( m = i -> ( ( F ` m ) : dom ( F ` m ) --> RR <-> ( F ` i ) : dom ( F ` i ) --> RR ) ) |
97 |
93 96
|
imbi12d |
|- ( m = i -> ( ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) <-> ( ( ph /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) ) ) |
98 |
97 22
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) |
99 |
98
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) |
100 |
|
fveq2 |
|- ( m = l -> ( F ` m ) = ( F ` l ) ) |
101 |
100
|
dmeqd |
|- ( m = l -> dom ( F ` m ) = dom ( F ` l ) ) |
102 |
101
|
cbviinv |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) |
103 |
102
|
a1i |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) ) |
104 |
103
|
iuneq2i |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ n e. Z |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) |
105 |
|
fveq2 |
|- ( n = m -> ( ZZ>= ` n ) = ( ZZ>= ` m ) ) |
106 |
105
|
iineq1d |
|- ( n = m -> |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = |^|_ l e. ( ZZ>= ` m ) dom ( F ` l ) ) |
107 |
|
fveq2 |
|- ( l = i -> ( F ` l ) = ( F ` i ) ) |
108 |
107
|
dmeqd |
|- ( l = i -> dom ( F ` l ) = dom ( F ` i ) ) |
109 |
108
|
cbviinv |
|- |^|_ l e. ( ZZ>= ` m ) dom ( F ` l ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
110 |
109
|
a1i |
|- ( n = m -> |^|_ l e. ( ZZ>= ` m ) dom ( F ` l ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) ) |
111 |
106 110
|
eqtrd |
|- ( n = m -> |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) ) |
112 |
111
|
cbviunv |
|- U_ n e. Z |^|_ l e. ( ZZ>= ` n ) dom ( F ` l ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
113 |
104 112
|
eqtri |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
114 |
113
|
rabeqi |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
115 |
|
fveq2 |
|- ( i = m -> ( F ` i ) = ( F ` m ) ) |
116 |
115
|
fveq1d |
|- ( i = m -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) |
117 |
116
|
cbvmptv |
|- ( i e. Z |-> ( ( F ` i ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` x ) ) |
118 |
117
|
eqcomi |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( i e. Z |-> ( ( F ` i ) ` x ) ) |
119 |
118
|
eleq1i |
|- ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( i e. Z |-> ( ( F ` i ) ` x ) ) e. dom ~~> ) |
120 |
119
|
rabbii |
|- { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( i e. Z |-> ( ( F ` i ) ` x ) ) e. dom ~~> } |
121 |
5 114 120
|
3eqtri |
|- D = { x e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) | ( i e. Z |-> ( ( F ` i ) ` x ) ) e. dom ~~> } |
122 |
118
|
fveq2i |
|- ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( i e. Z |-> ( ( F ` i ) ` x ) ) ) |
123 |
122
|
mpteq2i |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( x e. D |-> ( ~~> ` ( i e. Z |-> ( ( F ` i ) ` x ) ) ) ) |
124 |
6 123
|
eqtri |
|- G = ( x e. D |-> ( ~~> ` ( i e. Z |-> ( ( F ` i ) ` x ) ) ) ) |
125 |
14
|
adantr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> x e. D ) |
126 |
42
|
adantl |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( y / 2 ) e. RR+ ) |
127 |
88 89 90 91 2 99 121 124 125 126
|
fnlimabslt |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) |
128 |
35
|
adantr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( G ` x ) e. RR ) |
129 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( F ` i ) ` x ) e. RR ) |
130 |
128 129
|
resubcld |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) e. RR ) |
131 |
130
|
adantrr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) e. RR ) |
132 |
130
|
recnd |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) e. CC ) |
133 |
132
|
abscld |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) e. RR ) |
134 |
133
|
adantrr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) e. RR ) |
135 |
37
|
rehalfcld |
|- ( y e. RR+ -> ( y / 2 ) e. RR ) |
136 |
135
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( y / 2 ) e. RR ) |
137 |
131
|
leabsd |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) <_ ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) ) |
138 |
34
|
recnd |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( G ` x ) e. CC ) |
139 |
138
|
adantr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( G ` x ) e. CC ) |
140 |
|
recn |
|- ( ( ( F ` i ) ` x ) e. RR -> ( ( F ` i ) ` x ) e. CC ) |
141 |
140
|
adantl |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( ( F ` i ) ` x ) e. CC ) |
142 |
139 141
|
abssubd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( F ` i ) ` x ) e. RR ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) = ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) ) |
143 |
142
|
adantrr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) = ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) ) |
144 |
|
simprr |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) |
145 |
143 144
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) < ( y / 2 ) ) |
146 |
145
|
adantlr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( ( F ` i ) ` x ) ) ) < ( y / 2 ) ) |
147 |
131 134 136 137 146
|
lelttrd |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( G ` x ) - ( ( F ` i ) ` x ) ) < ( y / 2 ) ) |
148 |
35
|
adantr |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( G ` x ) e. RR ) |
149 |
|
simprl |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( F ` i ) ` x ) e. RR ) |
150 |
148 149 136
|
ltsubadd2d |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( ( ( G ` x ) - ( ( F ` i ) ` x ) ) < ( y / 2 ) <-> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
151 |
147 150
|
mpbid |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) ) -> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) |
152 |
151
|
ex |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
153 |
152
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ i e. ( ZZ>= ` m ) ) -> ( ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
154 |
153
|
ralimdva |
|- ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) -> ( A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
155 |
154
|
ex |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( m e. Z -> ( A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) ) |
156 |
41 155
|
reximdai |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( E. m e. Z A. i e. ( ZZ>= ` m ) ( ( ( F ` i ) ` x ) e. RR /\ ( abs ` ( ( ( F ` i ) ` x ) - ( G ` x ) ) ) < ( y / 2 ) ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) ) |
157 |
127 156
|
mpd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) ) |
158 |
115
|
dmeqd |
|- ( i = m -> dom ( F ` i ) = dom ( F ` m ) ) |
159 |
158
|
eleq2d |
|- ( i = m -> ( x e. dom ( F ` i ) <-> x e. dom ( F ` m ) ) ) |
160 |
116
|
breq1d |
|- ( i = m -> ( ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) <-> ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
161 |
159 160
|
anbi12d |
|- ( i = m -> ( ( x e. dom ( F ` i ) /\ ( ( F ` i ) ` x ) < ( A + ( y / 2 ) ) ) <-> ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) ) |
162 |
116
|
oveq1d |
|- ( i = m -> ( ( ( F ` i ) ` x ) + ( y / 2 ) ) = ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) |
163 |
162
|
breq2d |
|- ( i = m -> ( ( G ` x ) < ( ( ( F ` i ) ` x ) + ( y / 2 ) ) <-> ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) ) |
164 |
41 2 87 157 161 163
|
rexanuz3 |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) ) |
165 |
|
df-3an |
|- ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) ) |
166 |
|
3ancomb |
|- ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
167 |
165 166
|
bitr3i |
|- ( ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
168 |
167
|
rexbii |
|- ( E. m e. Z ( ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) <-> E. m e. Z ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
169 |
164 168
|
sylib |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> E. m e. Z ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) |
170 |
35
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) e. RR ) |
171 |
22
|
3adant3 |
|- ( ( ph /\ m e. Z /\ x e. dom ( F ` m ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
172 |
|
simp3 |
|- ( ( ph /\ m e. Z /\ x e. dom ( F ` m ) ) -> x e. dom ( F ` m ) ) |
173 |
171 172
|
ffvelrnd |
|- ( ( ph /\ m e. Z /\ x e. dom ( F ` m ) ) -> ( ( F ` m ) ` x ) e. RR ) |
174 |
173
|
ad4ant134 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( ( F ` m ) ` x ) e. RR ) |
175 |
|
simpllr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> y e. RR+ ) |
176 |
175 135
|
syl |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( y / 2 ) e. RR ) |
177 |
174 176
|
readdcld |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) e. RR ) |
178 |
177
|
adantl3r |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ x e. dom ( F ` m ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) e. RR ) |
179 |
178
|
3ad2antr1 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) e. RR ) |
180 |
|
rehalfcl |
|- ( y e. RR -> ( y / 2 ) e. RR ) |
181 |
38 180
|
syl |
|- ( ( ph /\ y e. RR+ ) -> ( y / 2 ) e. RR ) |
182 |
36 181
|
jca |
|- ( ( ph /\ y e. RR+ ) -> ( A e. RR /\ ( y / 2 ) e. RR ) ) |
183 |
|
readdcl |
|- ( ( A e. RR /\ ( y / 2 ) e. RR ) -> ( A + ( y / 2 ) ) e. RR ) |
184 |
182 183
|
syl |
|- ( ( ph /\ y e. RR+ ) -> ( A + ( y / 2 ) ) e. RR ) |
185 |
184 181
|
readdcld |
|- ( ( ph /\ y e. RR+ ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) e. RR ) |
186 |
185
|
ad5ant13 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) e. RR ) |
187 |
|
simpr2 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) ) |
188 |
174
|
adantrr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( F ` m ) ` x ) e. RR ) |
189 |
184
|
ad2antrr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( A + ( y / 2 ) ) e. RR ) |
190 |
176
|
adantrr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( y / 2 ) e. RR ) |
191 |
|
simprr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) |
192 |
188 189 190 191
|
ltadd1dd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
193 |
192
|
adantl3r |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
194 |
193
|
3adantr2 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( ( F ` m ) ` x ) + ( y / 2 ) ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
195 |
170 179 186 187 194
|
lttrd |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) < ( ( A + ( y / 2 ) ) + ( y / 2 ) ) ) |
196 |
36
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> A e. CC ) |
197 |
181
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> ( y / 2 ) e. CC ) |
198 |
196 197 197
|
addassd |
|- ( ( ph /\ y e. RR+ ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) = ( A + ( ( y / 2 ) + ( y / 2 ) ) ) ) |
199 |
37
|
recnd |
|- ( y e. RR+ -> y e. CC ) |
200 |
|
2halves |
|- ( y e. CC -> ( ( y / 2 ) + ( y / 2 ) ) = y ) |
201 |
199 200
|
syl |
|- ( y e. RR+ -> ( ( y / 2 ) + ( y / 2 ) ) = y ) |
202 |
201
|
oveq2d |
|- ( y e. RR+ -> ( A + ( ( y / 2 ) + ( y / 2 ) ) ) = ( A + y ) ) |
203 |
202
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> ( A + ( ( y / 2 ) + ( y / 2 ) ) ) = ( A + y ) ) |
204 |
198 203
|
eqtrd |
|- ( ( ph /\ y e. RR+ ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) = ( A + y ) ) |
205 |
204
|
ad5ant13 |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( ( A + ( y / 2 ) ) + ( y / 2 ) ) = ( A + y ) ) |
206 |
195 205
|
breqtrd |
|- ( ( ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) /\ m e. Z ) /\ ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) ) -> ( G ` x ) < ( A + y ) ) |
207 |
206
|
rexlimdva2 |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( E. m e. Z ( x e. dom ( F ` m ) /\ ( G ` x ) < ( ( ( F ` m ) ` x ) + ( y / 2 ) ) /\ ( ( F ` m ) ` x ) < ( A + ( y / 2 ) ) ) -> ( G ` x ) < ( A + y ) ) ) |
208 |
169 207
|
mpd |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( G ` x ) < ( A + y ) ) |
209 |
35 40 208
|
ltled |
|- ( ( ( ph /\ x e. ( D i^i I ) ) /\ y e. RR+ ) -> ( G ` x ) <_ ( A + y ) ) |
210 |
209
|
ralrimiva |
|- ( ( ph /\ x e. ( D i^i I ) ) -> A. y e. RR+ ( G ` x ) <_ ( A + y ) ) |
211 |
|
alrple |
|- ( ( ( G ` x ) e. RR /\ A e. RR ) -> ( ( G ` x ) <_ A <-> A. y e. RR+ ( G ` x ) <_ ( A + y ) ) ) |
212 |
34 49 211
|
syl2anc |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( ( G ` x ) <_ A <-> A. y e. RR+ ( G ` x ) <_ ( A + y ) ) ) |
213 |
210 212
|
mpbird |
|- ( ( ph /\ x e. ( D i^i I ) ) -> ( G ` x ) <_ A ) |
214 |
13 213
|
ssrabdv |
|- ( ph -> ( D i^i I ) C_ { x e. D | ( G ` x ) <_ A } ) |