| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimlem4.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
smflimlem4.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smflimlem4.3 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smflimlem4.4 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smflimlem4.5 |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 6 |
|
smflimlem4.6 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 7 |
|
smflimlem4.7 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 8 |
|
smflimlem4.8 |
⊢ 𝑃 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 9 |
|
smflimlem4.9 |
⊢ 𝐻 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
| 10 |
|
smflimlem4.10 |
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) |
| 11 |
|
smflimlem4.11 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑟 ) ∈ 𝑟 ) |
| 12 |
|
inss1 |
⊢ ( 𝐷 ∩ 𝐼 ) ⊆ 𝐷 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝐷 ∩ 𝐼 ) ⊆ 𝐷 ) |
| 14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → 𝑥 ∈ 𝐷 ) |
| 15 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐹 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐹 |
| 19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 20 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 21 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
| 22 |
19 20 21
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 23 |
22
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 25 |
24
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ∈ dom ⇝ ) ) |
| 27 |
26
|
cbvrabv |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ∈ dom ⇝ } |
| 28 |
5 27
|
eqtri |
⊢ 𝐷 = { 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ∈ dom ⇝ } |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 30 |
16 17 18 2 23 28 29
|
fnlimfvre |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 31 |
30
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ V ) |
| 32 |
15 31
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 33 |
32 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 34 |
14 33
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 36 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 37 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
| 39 |
36 38
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐴 + 𝑦 ) ∈ ℝ ) |
| 40 |
39
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐴 + 𝑦 ) ∈ ℝ ) |
| 41 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) |
| 42 |
|
rphalfcl |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 43 |
|
rpgtrecnn |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) |
| 44 |
42 43
|
syl |
⊢ ( 𝑦 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) |
| 46 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → 𝑆 ∈ SAlg ) |
| 47 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 48 |
47
|
ad5ant15 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 49 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → 𝐴 ∈ ℝ ) |
| 50 |
49
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → 𝐴 ∈ ℝ ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑍 |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑍 |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } |
| 54 |
|
nfcv |
⊢ Ⅎ 𝑘 { 𝑠 ∈ 𝑆 ∣ { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } |
| 55 |
24
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) ) |
| 56 |
55
|
cbvrabv |
⊢ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } |
| 57 |
56
|
a1i |
⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 58 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 1 / 𝑘 ) = ( 1 / 𝑗 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 + ( 1 / 𝑘 ) ) = ( 𝐴 + ( 1 / 𝑗 ) ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) ) ) |
| 61 |
60
|
rabbidv |
⊢ ( 𝑘 = 𝑗 → { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } ) |
| 62 |
57 61
|
eqtrd |
⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } ) |
| 63 |
62
|
eqeq1d |
⊢ ( 𝑘 = 𝑗 → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 64 |
63
|
rabbidv |
⊢ ( 𝑘 = 𝑗 → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 65 |
51 52 53 54 64
|
cbvmpo2 |
⊢ ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) = ( 𝑚 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 66 |
8 65
|
eqtri |
⊢ 𝑃 = ( 𝑚 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑧 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) < ( 𝐴 + ( 1 / 𝑗 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐶 ‘ ( 𝑚 𝑃 𝑗 ) ) |
| 69 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑚 𝑃 𝑘 ) = ( 𝑚 𝑃 𝑗 ) ) |
| 70 |
69
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) = ( 𝐶 ‘ ( 𝑚 𝑃 𝑗 ) ) ) |
| 71 |
51 52 67 68 70
|
cbvmpo2 |
⊢ ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) = ( 𝑚 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑗 ) ) ) |
| 72 |
9 71
|
eqtri |
⊢ 𝐻 = ( 𝑚 ∈ 𝑍 , 𝑗 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑗 ) ) ) |
| 73 |
|
simpll |
⊢ ( ( ( 𝑘 = 𝑗 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 = 𝑗 ) |
| 74 |
73
|
oveq2d |
⊢ ( ( ( 𝑘 = 𝑗 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 𝐻 𝑘 ) = ( 𝑚 𝐻 𝑗 ) ) |
| 75 |
74
|
iineq2dv |
⊢ ( ( 𝑘 = 𝑗 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑗 ) ) |
| 76 |
75
|
iuneq2dv |
⊢ ( 𝑘 = 𝑗 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑗 ) ) |
| 77 |
76
|
cbviinv |
⊢ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∩ 𝑗 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑗 ) |
| 78 |
10 77
|
eqtri |
⊢ 𝐼 = ∩ 𝑗 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑗 ) |
| 79 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑟 ) ∈ 𝑟 ) |
| 80 |
79
|
ad5ant15 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑟 ) ∈ 𝑟 ) |
| 81 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) |
| 82 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → 𝑘 ∈ ℕ ) |
| 83 |
42
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 84 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) |
| 85 |
2 46 48 28 50 66 72 78 80 81 82 83 84
|
smflimlem3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 86 |
85
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝑦 / 2 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) ) |
| 87 |
45 86
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 88 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) |
| 89 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐹 |
| 90 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 91 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 92 |
|
eleq1w |
⊢ ( 𝑚 = 𝑖 → ( 𝑚 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
| 93 |
92
|
anbi2d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
| 94 |
|
fveq2 |
⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 95 |
94
|
dmeqd |
⊢ ( 𝑚 = 𝑖 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑖 ) ) |
| 96 |
94 95
|
feq12d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ↔ ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) ) |
| 97 |
93 96
|
imbi12d |
⊢ ( 𝑚 = 𝑖 → ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) ) ) |
| 98 |
97 22
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) |
| 99 |
98
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) |
| 100 |
|
fveq2 |
⊢ ( 𝑚 = 𝑙 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑙 ) ) |
| 101 |
100
|
dmeqd |
⊢ ( 𝑚 = 𝑙 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑙 ) ) |
| 102 |
101
|
cbviinv |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑙 ) |
| 103 |
102
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑙 ) ) |
| 104 |
103
|
iuneq2i |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑙 ) |
| 105 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑚 ) ) |
| 106 |
105
|
iineq1d |
⊢ ( 𝑛 = 𝑚 → ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑙 ) = ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑙 ) ) |
| 107 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 108 |
107
|
dmeqd |
⊢ ( 𝑙 = 𝑖 → dom ( 𝐹 ‘ 𝑙 ) = dom ( 𝐹 ‘ 𝑖 ) ) |
| 109 |
108
|
cbviinv |
⊢ ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑙 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) |
| 110 |
109
|
a1i |
⊢ ( 𝑛 = 𝑚 → ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑙 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ) |
| 111 |
106 110
|
eqtrd |
⊢ ( 𝑛 = 𝑚 → ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑙 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ) |
| 112 |
111
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑙 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑙 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) |
| 113 |
104 112
|
eqtri |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) |
| 114 |
113
|
rabeqi |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 115 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 116 |
115
|
fveq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 117 |
116
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 118 |
117
|
eqcomi |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 119 |
118
|
eleq1i |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 120 |
119
|
rabbii |
⊢ { 𝑥 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ∣ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 121 |
5 114 120
|
3eqtri |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ∣ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 122 |
118
|
fveq2i |
⊢ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
| 123 |
122
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 124 |
6 123
|
eqtri |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 125 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑥 ∈ 𝐷 ) |
| 126 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 127 |
88 89 90 91 2 99 121 124 125 126
|
fnlimabslt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) |
| 128 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 129 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) |
| 130 |
128 129
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 131 |
130
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 132 |
130
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 133 |
132
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 134 |
133
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 135 |
37
|
rehalfcld |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) |
| 136 |
135
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 137 |
131
|
leabsd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 138 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 140 |
|
recn |
⊢ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
| 141 |
140
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
| 142 |
139 141
|
abssubd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 143 |
142
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 144 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) |
| 145 |
143 144
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) |
| 146 |
145
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) |
| 147 |
131 134 136 137 146
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) < ( 𝑦 / 2 ) ) |
| 148 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 149 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ) |
| 150 |
148 149 136
|
ltsubadd2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( ( ( 𝐺 ‘ 𝑥 ) − ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) < ( 𝑦 / 2 ) ↔ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 151 |
147 150
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) ) → ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) |
| 152 |
151
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) → ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 153 |
152
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) → ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 154 |
153
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 155 |
154
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑚 ∈ 𝑍 → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) ) |
| 156 |
41 155
|
reximdai |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℝ ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑦 / 2 ) ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 157 |
127 156
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) |
| 158 |
115
|
dmeqd |
⊢ ( 𝑖 = 𝑚 → dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
| 159 |
158
|
eleq2d |
⊢ ( 𝑖 = 𝑚 → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ↔ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 160 |
116
|
breq1d |
⊢ ( 𝑖 = 𝑚 → ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 161 |
159 160
|
anbi12d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) ) |
| 162 |
116
|
oveq1d |
⊢ ( 𝑖 = 𝑚 → ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) = ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) |
| 163 |
162
|
breq2d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ↔ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 164 |
41 2 87 157 161 163
|
rexanuz3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑚 ∈ 𝑍 ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 165 |
|
df-3an |
⊢ ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ↔ ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ) |
| 166 |
|
3ancomb |
⊢ ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 167 |
165 166
|
bitr3i |
⊢ ( ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 168 |
167
|
rexbii |
⊢ ( ∃ 𝑚 ∈ 𝑍 ( ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) ↔ ∃ 𝑚 ∈ 𝑍 ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 169 |
164 168
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑚 ∈ 𝑍 ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) |
| 170 |
35
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 171 |
22
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 172 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 173 |
171 172
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 174 |
173
|
ad4ant134 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 175 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → 𝑦 ∈ ℝ+ ) |
| 176 |
175 135
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 177 |
174 176
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 178 |
177
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 179 |
178
|
3ad2antr1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 180 |
|
rehalfcl |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 / 2 ) ∈ ℝ ) |
| 181 |
38 180
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 182 |
36 181
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐴 ∈ ℝ ∧ ( 𝑦 / 2 ) ∈ ℝ ) ) |
| 183 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑦 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 184 |
182 183
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐴 + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 185 |
184 181
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 186 |
185
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 187 |
|
simpr2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ) |
| 188 |
174
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 189 |
184
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( 𝐴 + ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 190 |
176
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 191 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) |
| 192 |
188 189 190 191
|
ltadd1dd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) < ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) ) |
| 193 |
192
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) < ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) ) |
| 194 |
193
|
3adantr2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) < ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) ) |
| 195 |
170 179 186 187 194
|
lttrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) < ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) ) |
| 196 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 197 |
181
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℂ ) |
| 198 |
196 197 197
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) = ( 𝐴 + ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) ) ) |
| 199 |
37
|
recnd |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) |
| 200 |
|
2halves |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) = 𝑦 ) |
| 201 |
199 200
|
syl |
⊢ ( 𝑦 ∈ ℝ+ → ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) = 𝑦 ) |
| 202 |
201
|
oveq2d |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝐴 + ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) ) = ( 𝐴 + 𝑦 ) ) |
| 203 |
202
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐴 + ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) ) = ( 𝐴 + 𝑦 ) ) |
| 204 |
198 203
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) = ( 𝐴 + 𝑦 ) ) |
| 205 |
204
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( ( 𝐴 + ( 𝑦 / 2 ) ) + ( 𝑦 / 2 ) ) = ( 𝐴 + 𝑦 ) ) |
| 206 |
195 205
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) < ( 𝐴 + 𝑦 ) ) |
| 207 |
206
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ 𝑍 ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑥 ) < ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) + ( 𝑦 / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 𝑦 / 2 ) ) ) → ( 𝐺 ‘ 𝑥 ) < ( 𝐴 + 𝑦 ) ) ) |
| 208 |
169 207
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐺 ‘ 𝑥 ) < ( 𝐴 + 𝑦 ) ) |
| 209 |
35 40 208
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐴 + 𝑦 ) ) |
| 210 |
209
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → ∀ 𝑦 ∈ ℝ+ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐴 + 𝑦 ) ) |
| 211 |
|
alrple |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ↔ ∀ 𝑦 ∈ ℝ+ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐴 + 𝑦 ) ) ) |
| 212 |
34 49 211
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → ( ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ↔ ∀ 𝑦 ∈ ℝ+ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐴 + 𝑦 ) ) ) |
| 213 |
210 212
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 ∩ 𝐼 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
| 214 |
13 213
|
ssrabdv |
⊢ ( 𝜑 → ( 𝐷 ∩ 𝐼 ) ⊆ { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ) |