Step |
Hyp |
Ref |
Expression |
1 |
|
rexanuz3.1 |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
rexanuz3.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
rexanuz3.3 |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜒 ) |
4 |
|
rexanuz3.4 |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) |
5 |
|
rexanuz3.5 |
⊢ ( 𝑘 = 𝑗 → ( 𝜒 ↔ 𝜃 ) ) |
6 |
|
rexanuz3.6 |
⊢ ( 𝑘 = 𝑗 → ( 𝜓 ↔ 𝜏 ) ) |
7 |
3 4
|
jca |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜒 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
8 |
2
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜒 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
9 |
7 8
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) |
10 |
2
|
eleq2i |
⊢ ( 𝑗 ∈ 𝑍 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
10
|
biimpi |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
13 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
16 |
|
simpr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) |
17 |
5 6
|
anbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜃 ∧ 𝜏 ) ) ) |
18 |
17
|
rspcva |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) → ( 𝜃 ∧ 𝜏 ) ) |
19 |
15 16 18
|
syl2anc |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) → ( 𝜃 ∧ 𝜏 ) ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) ) → ( 𝜃 ∧ 𝜏 ) ) |
21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) → ( 𝜃 ∧ 𝜏 ) ) ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) → ( 𝜃 ∧ 𝜏 ) ) ) ) |
23 |
1 22
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜒 ∧ 𝜓 ) → ∃ 𝑗 ∈ 𝑍 ( 𝜃 ∧ 𝜏 ) ) ) |
24 |
9 23
|
mpd |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝜃 ∧ 𝜏 ) ) |