Metamath Proof Explorer


Theorem rexanuz3

Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses rexanuz3.1 jφ
rexanuz3.2 Z=M
rexanuz3.3 φjZkjχ
rexanuz3.4 φjZkjψ
rexanuz3.5 k=jχθ
rexanuz3.6 k=jψτ
Assertion rexanuz3 φjZθτ

Proof

Step Hyp Ref Expression
1 rexanuz3.1 jφ
2 rexanuz3.2 Z=M
3 rexanuz3.3 φjZkjχ
4 rexanuz3.4 φjZkjψ
5 rexanuz3.5 k=jχθ
6 rexanuz3.6 k=jψτ
7 3 4 jca φjZkjχjZkjψ
8 2 rexanuz2 jZkjχψjZkjχjZkjψ
9 7 8 sylibr φjZkjχψ
10 2 eleq2i jZjM
11 10 biimpi jZjM
12 eluzelz jMj
13 uzid jjj
14 11 12 13 3syl jZjj
15 14 adantr jZkjχψjj
16 simpr jZkjχψkjχψ
17 5 6 anbi12d k=jχψθτ
18 17 rspcva jjkjχψθτ
19 15 16 18 syl2anc jZkjχψθτ
20 19 adantll φjZkjχψθτ
21 20 ex φjZkjχψθτ
22 21 ex φjZkjχψθτ
23 1 22 reximdai φjZkjχψjZθτ
24 9 23 mpd φjZθτ