Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem3.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
smflimlem3.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smflimlem3.m |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
4 |
|
smflimlem3.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
5 |
|
smflimlem3.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
|
smflimlem3.p |
⊢ 𝑃 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
7 |
|
smflimlem3.h |
⊢ 𝐻 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
8 |
|
smflimlem3.i |
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) |
9 |
|
smflimlem3.c |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑦 ) ∈ 𝑦 ) |
10 |
|
smflimlem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∩ 𝐼 ) ) |
11 |
|
smflimlem3.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
12 |
|
smflimlem3.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
13 |
|
smflimlem3.l |
⊢ ( 𝜑 → ( 1 / 𝐾 ) < 𝑌 ) |
14 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
15 |
4 14
|
eqsstri |
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
16 |
|
inss1 |
⊢ ( 𝐷 ∩ 𝐼 ) ⊆ 𝐷 |
17 |
16 10
|
sseldi |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
18 |
15 17
|
sseldi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑚 ) ) |
20 |
19
|
dmeqd |
⊢ ( 𝑖 = 𝑚 → dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
21 |
|
eqcom |
⊢ ( 𝑖 = 𝑚 ↔ 𝑚 = 𝑖 ) |
22 |
21
|
imbi1i |
⊢ ( ( 𝑖 = 𝑚 → dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ) ↔ ( 𝑚 = 𝑖 → dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ) ) |
23 |
|
eqcom |
⊢ ( dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ↔ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑖 ) ) |
24 |
23
|
imbi2i |
⊢ ( ( 𝑚 = 𝑖 → dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ) ↔ ( 𝑚 = 𝑖 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑖 ) ) ) |
25 |
22 24
|
bitri |
⊢ ( ( 𝑖 = 𝑚 → dom ( 𝐹 ‘ 𝑖 ) = dom ( 𝐹 ‘ 𝑚 ) ) ↔ ( 𝑚 = 𝑖 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑖 ) ) ) |
26 |
20 25
|
mpbi |
⊢ ( 𝑚 = 𝑖 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑖 ) ) |
27 |
26
|
cbviinv |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑖 ) |
28 |
27
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑖 ) ) |
29 |
28
|
iuneq2i |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑖 ) |
30 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑚 ) ) |
31 |
30
|
iineq1d |
⊢ ( 𝑛 = 𝑚 → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑖 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ) |
32 |
31
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑖 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) |
33 |
29 32
|
eqtri |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) |
34 |
18 33
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ) |
35 |
|
eqid |
⊢ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) |
36 |
1 35
|
allbutfi |
⊢ ( 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) |
37 |
36
|
biimpi |
⊢ ( 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) dom ( 𝐹 ‘ 𝑖 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) |
38 |
34 37
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) |
39 |
10
|
elin2d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
40 |
|
oveq1 |
⊢ ( 𝑚 = 𝑖 → ( 𝑚 𝐻 𝑘 ) = ( 𝑖 𝐻 𝑘 ) ) |
41 |
40
|
cbviinv |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 𝐻 𝑘 ) |
42 |
41
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 𝐻 𝑘 ) ) |
43 |
42
|
iuneq2i |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 𝐻 𝑘 ) |
44 |
30
|
iineq1d |
⊢ ( 𝑛 = 𝑚 → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 𝐻 𝑘 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) ) |
45 |
44
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑖 𝐻 𝑘 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) |
46 |
43 45
|
eqtri |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) |
47 |
46
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) ) |
48 |
47
|
iineq2i |
⊢ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) = ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) |
49 |
8 48
|
eqtri |
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) |
50 |
39 49
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) ) |
51 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑖 𝐻 𝑘 ) = ( 𝑖 𝐻 𝐾 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( 𝑖 𝐻 𝑘 ) = ( 𝑖 𝐻 𝐾 ) ) |
53 |
52
|
iineq2dv |
⊢ ( 𝑘 = 𝐾 → ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) = ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) ) |
54 |
53
|
iuneq2d |
⊢ ( 𝑘 = 𝐾 → ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) ) |
55 |
54
|
eleq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝑘 ) ↔ 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) ) ) |
56 |
50 11 55
|
eliind |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) ) |
57 |
|
eqid |
⊢ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) |
58 |
1 57
|
allbutfi |
⊢ ( 𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑖 𝐻 𝐾 ) ↔ ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) |
59 |
56 58
|
sylib |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) |
60 |
38 59
|
jca |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) |
61 |
1
|
rexanuz2 |
⊢ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ↔ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) |
62 |
60 61
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) |
63 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝜑 ) |
64 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
65 |
1
|
uztrn2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑖 ∈ 𝑍 ) |
66 |
64 65
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑖 ∈ 𝑍 ) |
67 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) |
68 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) |
69 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐻 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) ) |
70 |
|
oveq12 |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( 𝑚 𝑃 𝑘 ) = ( 𝑖 𝑃 𝐾 ) ) |
71 |
70
|
fveq2d |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
74 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐾 ∈ ℕ ) |
75 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ V ) |
76 |
69 72 73 74 75
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 𝐻 𝐾 ) = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
77 |
76
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → ( 𝑖 𝐻 𝐾 ) = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
78 |
68 77
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → 𝑋 ∈ ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
79 |
78
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → 𝑋 ∈ ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
80 |
79
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → 𝑋 ∈ ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
81 |
80 67
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → 𝑋 ∈ ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) |
82 |
|
eqid |
⊢ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } |
83 |
82 2
|
rabexd |
⊢ ( 𝜑 → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
84 |
83
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
85 |
84
|
a1d |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 → ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) ) |
86 |
85
|
imp |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
87 |
86
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
88 |
6
|
fnmpo |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V → 𝑃 Fn ( 𝑍 × ℕ ) ) |
89 |
87 88
|
syl |
⊢ ( 𝜑 → 𝑃 Fn ( 𝑍 × ℕ ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑃 Fn ( 𝑍 × ℕ ) ) |
91 |
|
fnovrn |
⊢ ( ( 𝑃 Fn ( 𝑍 × ℕ ) ∧ 𝑖 ∈ 𝑍 ∧ 𝐾 ∈ ℕ ) → ( 𝑖 𝑃 𝐾 ) ∈ ran 𝑃 ) |
92 |
90 73 74 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 𝑃 𝐾 ) ∈ ran 𝑃 ) |
93 |
|
ovex |
⊢ ( 𝑖 𝑃 𝐾 ) ∈ V |
94 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑖 𝑃 𝐾 ) → ( 𝑦 ∈ ran 𝑃 ↔ ( 𝑖 𝑃 𝐾 ) ∈ ran 𝑃 ) ) |
95 |
94
|
anbi2d |
⊢ ( 𝑦 = ( 𝑖 𝑃 𝐾 ) → ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) ↔ ( 𝜑 ∧ ( 𝑖 𝑃 𝐾 ) ∈ ran 𝑃 ) ) ) |
96 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑖 𝑃 𝐾 ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ) |
97 |
|
id |
⊢ ( 𝑦 = ( 𝑖 𝑃 𝐾 ) → 𝑦 = ( 𝑖 𝑃 𝐾 ) ) |
98 |
96 97
|
eleq12d |
⊢ ( 𝑦 = ( 𝑖 𝑃 𝐾 ) → ( ( 𝐶 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ ( 𝑖 𝑃 𝐾 ) ) ) |
99 |
95 98
|
imbi12d |
⊢ ( 𝑦 = ( 𝑖 𝑃 𝐾 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑦 ) ∈ 𝑦 ) ↔ ( ( 𝜑 ∧ ( 𝑖 𝑃 𝐾 ) ∈ ran 𝑃 ) → ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ ( 𝑖 𝑃 𝐾 ) ) ) ) |
100 |
93 99 9
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑖 𝑃 𝐾 ) ∈ ran 𝑃 ) → ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ ( 𝑖 𝑃 𝐾 ) ) |
101 |
92 100
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ ( 𝑖 𝑃 𝐾 ) ) |
102 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑃 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
103 |
26
|
adantr |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑖 ) ) |
104 |
19
|
fveq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
105 |
21
|
imbi1i |
⊢ ( ( 𝑖 = 𝑚 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ↔ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
106 |
|
eqcom |
⊢ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) |
107 |
106
|
imbi2i |
⊢ ( ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ↔ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
108 |
105 107
|
bitri |
⊢ ( ( 𝑖 = 𝑚 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ↔ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
109 |
104 108
|
mpbi |
⊢ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) |
110 |
109
|
adantr |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) |
111 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 1 / 𝑘 ) = ( 1 / 𝐾 ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐴 + ( 1 / 𝑘 ) ) = ( 𝐴 + ( 1 / 𝐾 ) ) ) |
113 |
112
|
adantl |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( 𝐴 + ( 1 / 𝑘 ) ) = ( 𝐴 + ( 1 / 𝐾 ) ) ) |
114 |
110 113
|
breq12d |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ↔ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) |
115 |
103 114
|
rabeqbidv |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } ) |
116 |
26
|
ineq2d |
⊢ ( 𝑚 = 𝑖 → ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) |
118 |
115 117
|
eqeq12d |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) ) |
119 |
118
|
rabbidv |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ) |
120 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑚 = 𝑖 ∧ 𝑘 = 𝐾 ) ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ) |
121 |
|
eqid |
⊢ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } |
122 |
121 2
|
rabexd |
⊢ ( 𝜑 → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ∈ V ) |
123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ∈ V ) |
124 |
102 120 73 74 123
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 𝑃 𝐾 ) = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ) |
125 |
101 124
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ) |
126 |
|
ineq1 |
⊢ ( 𝑠 = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) → ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) |
127 |
126
|
eqeq2d |
⊢ ( 𝑠 = ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) ↔ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) ) |
128 |
127
|
elrab |
⊢ ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑖 ) ) } ↔ ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ 𝑆 ∧ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) ) |
129 |
125 128
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∈ 𝑆 ∧ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) ) |
130 |
129
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } = ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) ) |
131 |
130
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → ( ( 𝐶 ‘ ( 𝑖 𝑃 𝐾 ) ) ∩ dom ( 𝐹 ‘ 𝑖 ) ) = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } ) |
133 |
81 132
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → 𝑋 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } ) |
134 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) ) |
135 |
|
eqidd |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 + ( 1 / 𝐾 ) ) = ( 𝐴 + ( 1 / 𝐾 ) ) ) |
136 |
134 135
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ↔ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) |
137 |
136
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑖 ) ∣ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝐾 ) ) } ↔ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) |
138 |
133 137
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) |
139 |
138
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) |
140 |
67 139
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) |
141 |
140
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) ) |
142 |
63 66 141
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) ) |
143 |
142
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) ) |
144 |
143
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ 𝑋 ∈ ( 𝑖 𝐻 𝐾 ) ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) ) |
145 |
62 144
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) |
146 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) |
147 |
|
eleq1 |
⊢ ( 𝑚 = 𝑖 → ( 𝑚 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
148 |
147
|
anbi2d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
149 |
|
fveq2 |
⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑖 ) ) |
150 |
149 26
|
feq12d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ↔ ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) ) |
151 |
148 150
|
imbi12d |
⊢ ( 𝑚 = 𝑖 → ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) ) ) |
152 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
153 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
154 |
152 3 153
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
155 |
151 154
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) |
156 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑖 ) : dom ( 𝐹 ‘ 𝑖 ) ⟶ ℝ ) |
157 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) → 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) |
158 |
156 157
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) ∈ ℝ ) |
159 |
158
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) ∈ ℝ ) |
160 |
11
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝐾 ) ∈ ℝ ) |
161 |
5 160
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 𝐾 ) ) ∈ ℝ ) |
162 |
161
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( 𝐴 + ( 1 / 𝐾 ) ) ∈ ℝ ) |
163 |
12
|
rpred |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
164 |
5 163
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑌 ) ∈ ℝ ) |
165 |
164
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( 𝐴 + 𝑌 ) ∈ ℝ ) |
166 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) |
167 |
160 163 5 13
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 𝐾 ) ) < ( 𝐴 + 𝑌 ) ) |
168 |
167
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( 𝐴 + ( 1 / 𝐾 ) ) < ( 𝐴 + 𝑌 ) ) |
169 |
159 162 165 166 168
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) |
170 |
146 169
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) ) |
171 |
170
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) ) ) |
172 |
63 66 171
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) ) ) |
173 |
172
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) ) ) |
174 |
173
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + ( 1 / 𝐾 ) ) ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) ) ) |
175 |
145 174
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑋 ) < ( 𝐴 + 𝑌 ) ) ) |