Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem3.z |
|
2 |
|
smflimlem3.s |
|
3 |
|
smflimlem3.m |
|
4 |
|
smflimlem3.d |
|
5 |
|
smflimlem3.a |
|
6 |
|
smflimlem3.p |
|
7 |
|
smflimlem3.h |
|
8 |
|
smflimlem3.i |
|
9 |
|
smflimlem3.c |
|
10 |
|
smflimlem3.x |
|
11 |
|
smflimlem3.k |
|
12 |
|
smflimlem3.y |
|
13 |
|
smflimlem3.l |
|
14 |
|
ssrab2 |
|
15 |
4 14
|
eqsstri |
|
16 |
|
inss1 |
|
17 |
16 10
|
sselid |
|
18 |
15 17
|
sselid |
|
19 |
|
fveq2 |
|
20 |
19
|
dmeqd |
|
21 |
|
eqcom |
|
22 |
21
|
imbi1i |
|
23 |
|
eqcom |
|
24 |
23
|
imbi2i |
|
25 |
22 24
|
bitri |
|
26 |
20 25
|
mpbi |
|
27 |
26
|
cbviinv |
|
28 |
27
|
a1i |
|
29 |
28
|
iuneq2i |
|
30 |
|
fveq2 |
|
31 |
30
|
iineq1d |
|
32 |
31
|
cbviunv |
|
33 |
29 32
|
eqtri |
|
34 |
18 33
|
eleqtrdi |
|
35 |
|
eqid |
|
36 |
1 35
|
allbutfi |
|
37 |
36
|
biimpi |
|
38 |
34 37
|
syl |
|
39 |
10
|
elin2d |
|
40 |
|
oveq1 |
|
41 |
40
|
cbviinv |
|
42 |
41
|
a1i |
|
43 |
42
|
iuneq2i |
|
44 |
30
|
iineq1d |
|
45 |
44
|
cbviunv |
|
46 |
43 45
|
eqtri |
|
47 |
46
|
a1i |
|
48 |
47
|
iineq2i |
|
49 |
8 48
|
eqtri |
|
50 |
39 49
|
eleqtrdi |
|
51 |
|
oveq2 |
|
52 |
51
|
adantr |
|
53 |
52
|
iineq2dv |
|
54 |
53
|
iuneq2d |
|
55 |
54
|
eleq2d |
|
56 |
50 11 55
|
eliind |
|
57 |
|
eqid |
|
58 |
1 57
|
allbutfi |
|
59 |
56 58
|
sylib |
|
60 |
38 59
|
jca |
|
61 |
1
|
rexanuz2 |
|
62 |
60 61
|
sylibr |
|
63 |
|
simpll |
|
64 |
|
simpr |
|
65 |
1
|
uztrn2 |
|
66 |
64 65
|
sylan |
|
67 |
|
simprl |
|
68 |
|
simp3 |
|
69 |
7
|
a1i |
|
70 |
|
oveq12 |
|
71 |
70
|
fveq2d |
|
72 |
71
|
adantl |
|
73 |
|
simpr |
|
74 |
11
|
adantr |
|
75 |
|
fvexd |
|
76 |
69 72 73 74 75
|
ovmpod |
|
77 |
76
|
3adant3 |
|
78 |
68 77
|
eleqtrd |
|
79 |
78
|
3expa |
|
80 |
79
|
adantrl |
|
81 |
80 67
|
elind |
|
82 |
|
eqid |
|
83 |
82 2
|
rabexd |
|
84 |
83
|
ralrimivw |
|
85 |
84
|
a1d |
|
86 |
85
|
imp |
|
87 |
86
|
ralrimiva |
|
88 |
6
|
fnmpo |
|
89 |
87 88
|
syl |
|
90 |
89
|
adantr |
|
91 |
|
fnovrn |
|
92 |
90 73 74 91
|
syl3anc |
|
93 |
|
ovex |
|
94 |
|
eleq1 |
|
95 |
94
|
anbi2d |
|
96 |
|
fveq2 |
|
97 |
|
id |
|
98 |
96 97
|
eleq12d |
|
99 |
95 98
|
imbi12d |
|
100 |
93 99 9
|
vtocl |
|
101 |
92 100
|
syldan |
|
102 |
6
|
a1i |
|
103 |
26
|
adantr |
|
104 |
19
|
fveq1d |
|
105 |
21
|
imbi1i |
|
106 |
|
eqcom |
|
107 |
106
|
imbi2i |
|
108 |
105 107
|
bitri |
|
109 |
104 108
|
mpbi |
|
110 |
109
|
adantr |
|
111 |
|
oveq2 |
|
112 |
111
|
oveq2d |
|
113 |
112
|
adantl |
|
114 |
110 113
|
breq12d |
|
115 |
103 114
|
rabeqbidv |
|
116 |
26
|
ineq2d |
|
117 |
116
|
adantr |
|
118 |
115 117
|
eqeq12d |
|
119 |
118
|
rabbidv |
|
120 |
119
|
adantl |
|
121 |
|
eqid |
|
122 |
121 2
|
rabexd |
|
123 |
122
|
adantr |
|
124 |
102 120 73 74 123
|
ovmpod |
|
125 |
101 124
|
eleqtrd |
|
126 |
|
ineq1 |
|
127 |
126
|
eqeq2d |
|
128 |
127
|
elrab |
|
129 |
125 128
|
sylib |
|
130 |
129
|
simprd |
|
131 |
130
|
eqcomd |
|
132 |
131
|
adantr |
|
133 |
81 132
|
eleqtrd |
|
134 |
|
fveq2 |
|
135 |
|
eqidd |
|
136 |
134 135
|
breq12d |
|
137 |
136
|
elrab |
|
138 |
133 137
|
sylib |
|
139 |
138
|
simprd |
|
140 |
67 139
|
jca |
|
141 |
140
|
ex |
|
142 |
63 66 141
|
syl2anc |
|
143 |
142
|
ralimdva |
|
144 |
143
|
reximdva |
|
145 |
62 144
|
mpd |
|
146 |
|
simprl |
|
147 |
|
eleq1 |
|
148 |
147
|
anbi2d |
|
149 |
|
fveq2 |
|
150 |
149 26
|
feq12d |
|
151 |
148 150
|
imbi12d |
|
152 |
2
|
adantr |
|
153 |
|
eqid |
|
154 |
152 3 153
|
smff |
|
155 |
151 154
|
chvarvv |
|
156 |
155
|
adantr |
|
157 |
|
simpr |
|
158 |
156 157
|
ffvelrnd |
|
159 |
158
|
adantrr |
|
160 |
11
|
nnrecred |
|
161 |
5 160
|
readdcld |
|
162 |
161
|
ad2antrr |
|
163 |
12
|
rpred |
|
164 |
5 163
|
readdcld |
|
165 |
164
|
ad2antrr |
|
166 |
|
simprr |
|
167 |
160 163 5 13
|
ltadd2dd |
|
168 |
167
|
ad2antrr |
|
169 |
159 162 165 166 168
|
lttrd |
|
170 |
146 169
|
jca |
|
171 |
170
|
ex |
|
172 |
63 66 171
|
syl2anc |
|
173 |
172
|
ralimdva |
|
174 |
173
|
reximdva |
|
175 |
145 174
|
mpd |
|