Metamath Proof Explorer


Theorem smflimlem3

Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem3.z Z = M
smflimlem3.s φ S SAlg
smflimlem3.m φ m Z F m SMblFn S
smflimlem3.d D = x n Z m n dom F m | m Z F m x dom
smflimlem3.a φ A
smflimlem3.p P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
smflimlem3.h H = m Z , k C m P k
smflimlem3.i I = k n Z m n m H k
smflimlem3.c φ y ran P C y y
smflimlem3.x φ X D I
smflimlem3.k φ K
smflimlem3.y φ Y +
smflimlem3.l φ 1 K < Y
Assertion smflimlem3 φ m Z i m X dom F i F i X < A + Y

Proof

Step Hyp Ref Expression
1 smflimlem3.z Z = M
2 smflimlem3.s φ S SAlg
3 smflimlem3.m φ m Z F m SMblFn S
4 smflimlem3.d D = x n Z m n dom F m | m Z F m x dom
5 smflimlem3.a φ A
6 smflimlem3.p P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
7 smflimlem3.h H = m Z , k C m P k
8 smflimlem3.i I = k n Z m n m H k
9 smflimlem3.c φ y ran P C y y
10 smflimlem3.x φ X D I
11 smflimlem3.k φ K
12 smflimlem3.y φ Y +
13 smflimlem3.l φ 1 K < Y
14 ssrab2 x n Z m n dom F m | m Z F m x dom n Z m n dom F m
15 4 14 eqsstri D n Z m n dom F m
16 inss1 D I D
17 16 10 sselid φ X D
18 15 17 sselid φ X n Z m n dom F m
19 fveq2 i = m F i = F m
20 19 dmeqd i = m dom F i = dom F m
21 eqcom i = m m = i
22 21 imbi1i i = m dom F i = dom F m m = i dom F i = dom F m
23 eqcom dom F i = dom F m dom F m = dom F i
24 23 imbi2i m = i dom F i = dom F m m = i dom F m = dom F i
25 22 24 bitri i = m dom F i = dom F m m = i dom F m = dom F i
26 20 25 mpbi m = i dom F m = dom F i
27 26 cbviinv m n dom F m = i n dom F i
28 27 a1i n Z m n dom F m = i n dom F i
29 28 iuneq2i n Z m n dom F m = n Z i n dom F i
30 fveq2 n = m n = m
31 30 iineq1d n = m i n dom F i = i m dom F i
32 31 cbviunv n Z i n dom F i = m Z i m dom F i
33 29 32 eqtri n Z m n dom F m = m Z i m dom F i
34 18 33 eleqtrdi φ X m Z i m dom F i
35 eqid m Z i m dom F i = m Z i m dom F i
36 1 35 allbutfi X m Z i m dom F i m Z i m X dom F i
37 36 biimpi X m Z i m dom F i m Z i m X dom F i
38 34 37 syl φ m Z i m X dom F i
39 10 elin2d φ X I
40 oveq1 m = i m H k = i H k
41 40 cbviinv m n m H k = i n i H k
42 41 a1i n Z m n m H k = i n i H k
43 42 iuneq2i n Z m n m H k = n Z i n i H k
44 30 iineq1d n = m i n i H k = i m i H k
45 44 cbviunv n Z i n i H k = m Z i m i H k
46 43 45 eqtri n Z m n m H k = m Z i m i H k
47 46 a1i k n Z m n m H k = m Z i m i H k
48 47 iineq2i k n Z m n m H k = k m Z i m i H k
49 8 48 eqtri I = k m Z i m i H k
50 39 49 eleqtrdi φ X k m Z i m i H k
51 oveq2 k = K i H k = i H K
52 51 adantr k = K i m i H k = i H K
53 52 iineq2dv k = K i m i H k = i m i H K
54 53 iuneq2d k = K m Z i m i H k = m Z i m i H K
55 54 eleq2d k = K X m Z i m i H k X m Z i m i H K
56 50 11 55 eliind φ X m Z i m i H K
57 eqid m Z i m i H K = m Z i m i H K
58 1 57 allbutfi X m Z i m i H K m Z i m X i H K
59 56 58 sylib φ m Z i m X i H K
60 38 59 jca φ m Z i m X dom F i m Z i m X i H K
61 1 rexanuz2 m Z i m X dom F i X i H K m Z i m X dom F i m Z i m X i H K
62 60 61 sylibr φ m Z i m X dom F i X i H K
63 simpll φ m Z i m φ
64 simpr φ m Z m Z
65 1 uztrn2 m Z i m i Z
66 64 65 sylan φ m Z i m i Z
67 simprl φ i Z X dom F i X i H K X dom F i
68 simp3 φ i Z X i H K X i H K
69 7 a1i φ i Z H = m Z , k C m P k
70 oveq12 m = i k = K m P k = i P K
71 70 fveq2d m = i k = K C m P k = C i P K
72 71 adantl φ i Z m = i k = K C m P k = C i P K
73 simpr φ i Z i Z
74 11 adantr φ i Z K
75 fvexd φ i Z C i P K V
76 69 72 73 74 75 ovmpod φ i Z i H K = C i P K
77 76 3adant3 φ i Z X i H K i H K = C i P K
78 68 77 eleqtrd φ i Z X i H K X C i P K
79 78 3expa φ i Z X i H K X C i P K
80 79 adantrl φ i Z X dom F i X i H K X C i P K
81 80 67 elind φ i Z X dom F i X i H K X C i P K dom F i
82 eqid s S | x dom F m | F m x < A + 1 k = s dom F m = s S | x dom F m | F m x < A + 1 k = s dom F m
83 82 2 rabexd φ s S | x dom F m | F m x < A + 1 k = s dom F m V
84 83 ralrimivw φ k s S | x dom F m | F m x < A + 1 k = s dom F m V
85 84 a1d φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
86 85 imp φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
87 86 ralrimiva φ m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V
88 6 fnmpo m Z k s S | x dom F m | F m x < A + 1 k = s dom F m V P Fn Z ×
89 87 88 syl φ P Fn Z ×
90 89 adantr φ i Z P Fn Z ×
91 fnovrn P Fn Z × i Z K i P K ran P
92 90 73 74 91 syl3anc φ i Z i P K ran P
93 ovex i P K V
94 eleq1 y = i P K y ran P i P K ran P
95 94 anbi2d y = i P K φ y ran P φ i P K ran P
96 fveq2 y = i P K C y = C i P K
97 id y = i P K y = i P K
98 96 97 eleq12d y = i P K C y y C i P K i P K
99 95 98 imbi12d y = i P K φ y ran P C y y φ i P K ran P C i P K i P K
100 93 99 9 vtocl φ i P K ran P C i P K i P K
101 92 100 syldan φ i Z C i P K i P K
102 6 a1i φ i Z P = m Z , k s S | x dom F m | F m x < A + 1 k = s dom F m
103 26 adantr m = i k = K dom F m = dom F i
104 19 fveq1d i = m F i x = F m x
105 21 imbi1i i = m F i x = F m x m = i F i x = F m x
106 eqcom F i x = F m x F m x = F i x
107 106 imbi2i m = i F i x = F m x m = i F m x = F i x
108 105 107 bitri i = m F i x = F m x m = i F m x = F i x
109 104 108 mpbi m = i F m x = F i x
110 109 adantr m = i k = K F m x = F i x
111 oveq2 k = K 1 k = 1 K
112 111 oveq2d k = K A + 1 k = A + 1 K
113 112 adantl m = i k = K A + 1 k = A + 1 K
114 110 113 breq12d m = i k = K F m x < A + 1 k F i x < A + 1 K
115 103 114 rabeqbidv m = i k = K x dom F m | F m x < A + 1 k = x dom F i | F i x < A + 1 K
116 26 ineq2d m = i s dom F m = s dom F i
117 116 adantr m = i k = K s dom F m = s dom F i
118 115 117 eqeq12d m = i k = K x dom F m | F m x < A + 1 k = s dom F m x dom F i | F i x < A + 1 K = s dom F i
119 118 rabbidv m = i k = K s S | x dom F m | F m x < A + 1 k = s dom F m = s S | x dom F i | F i x < A + 1 K = s dom F i
120 119 adantl φ i Z m = i k = K s S | x dom F m | F m x < A + 1 k = s dom F m = s S | x dom F i | F i x < A + 1 K = s dom F i
121 eqid s S | x dom F i | F i x < A + 1 K = s dom F i = s S | x dom F i | F i x < A + 1 K = s dom F i
122 121 2 rabexd φ s S | x dom F i | F i x < A + 1 K = s dom F i V
123 122 adantr φ i Z s S | x dom F i | F i x < A + 1 K = s dom F i V
124 102 120 73 74 123 ovmpod φ i Z i P K = s S | x dom F i | F i x < A + 1 K = s dom F i
125 101 124 eleqtrd φ i Z C i P K s S | x dom F i | F i x < A + 1 K = s dom F i
126 ineq1 s = C i P K s dom F i = C i P K dom F i
127 126 eqeq2d s = C i P K x dom F i | F i x < A + 1 K = s dom F i x dom F i | F i x < A + 1 K = C i P K dom F i
128 127 elrab C i P K s S | x dom F i | F i x < A + 1 K = s dom F i C i P K S x dom F i | F i x < A + 1 K = C i P K dom F i
129 125 128 sylib φ i Z C i P K S x dom F i | F i x < A + 1 K = C i P K dom F i
130 129 simprd φ i Z x dom F i | F i x < A + 1 K = C i P K dom F i
131 130 eqcomd φ i Z C i P K dom F i = x dom F i | F i x < A + 1 K
132 131 adantr φ i Z X dom F i X i H K C i P K dom F i = x dom F i | F i x < A + 1 K
133 81 132 eleqtrd φ i Z X dom F i X i H K X x dom F i | F i x < A + 1 K
134 fveq2 x = X F i x = F i X
135 eqidd x = X A + 1 K = A + 1 K
136 134 135 breq12d x = X F i x < A + 1 K F i X < A + 1 K
137 136 elrab X x dom F i | F i x < A + 1 K X dom F i F i X < A + 1 K
138 133 137 sylib φ i Z X dom F i X i H K X dom F i F i X < A + 1 K
139 138 simprd φ i Z X dom F i X i H K F i X < A + 1 K
140 67 139 jca φ i Z X dom F i X i H K X dom F i F i X < A + 1 K
141 140 ex φ i Z X dom F i X i H K X dom F i F i X < A + 1 K
142 63 66 141 syl2anc φ m Z i m X dom F i X i H K X dom F i F i X < A + 1 K
143 142 ralimdva φ m Z i m X dom F i X i H K i m X dom F i F i X < A + 1 K
144 143 reximdva φ m Z i m X dom F i X i H K m Z i m X dom F i F i X < A + 1 K
145 62 144 mpd φ m Z i m X dom F i F i X < A + 1 K
146 simprl φ i Z X dom F i F i X < A + 1 K X dom F i
147 eleq1 m = i m Z i Z
148 147 anbi2d m = i φ m Z φ i Z
149 fveq2 m = i F m = F i
150 149 26 feq12d m = i F m : dom F m F i : dom F i
151 148 150 imbi12d m = i φ m Z F m : dom F m φ i Z F i : dom F i
152 2 adantr φ m Z S SAlg
153 eqid dom F m = dom F m
154 152 3 153 smff φ m Z F m : dom F m
155 151 154 chvarvv φ i Z F i : dom F i
156 155 adantr φ i Z X dom F i F i : dom F i
157 simpr φ i Z X dom F i X dom F i
158 156 157 ffvelrnd φ i Z X dom F i F i X
159 158 adantrr φ i Z X dom F i F i X < A + 1 K F i X
160 11 nnrecred φ 1 K
161 5 160 readdcld φ A + 1 K
162 161 ad2antrr φ i Z X dom F i F i X < A + 1 K A + 1 K
163 12 rpred φ Y
164 5 163 readdcld φ A + Y
165 164 ad2antrr φ i Z X dom F i F i X < A + 1 K A + Y
166 simprr φ i Z X dom F i F i X < A + 1 K F i X < A + 1 K
167 160 163 5 13 ltadd2dd φ A + 1 K < A + Y
168 167 ad2antrr φ i Z X dom F i F i X < A + 1 K A + 1 K < A + Y
169 159 162 165 166 168 lttrd φ i Z X dom F i F i X < A + 1 K F i X < A + Y
170 146 169 jca φ i Z X dom F i F i X < A + 1 K X dom F i F i X < A + Y
171 170 ex φ i Z X dom F i F i X < A + 1 K X dom F i F i X < A + Y
172 63 66 171 syl2anc φ m Z i m X dom F i F i X < A + 1 K X dom F i F i X < A + Y
173 172 ralimdva φ m Z i m X dom F i F i X < A + 1 K i m X dom F i F i X < A + Y
174 173 reximdva φ m Z i m X dom F i F i X < A + 1 K m Z i m X dom F i F i X < A + Y
175 145 174 mpd φ m Z i m X dom F i F i X < A + Y