| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimlem3.z |
|
| 2 |
|
smflimlem3.s |
|
| 3 |
|
smflimlem3.m |
|
| 4 |
|
smflimlem3.d |
|
| 5 |
|
smflimlem3.a |
|
| 6 |
|
smflimlem3.p |
|
| 7 |
|
smflimlem3.h |
|
| 8 |
|
smflimlem3.i |
|
| 9 |
|
smflimlem3.c |
|
| 10 |
|
smflimlem3.x |
|
| 11 |
|
smflimlem3.k |
|
| 12 |
|
smflimlem3.y |
|
| 13 |
|
smflimlem3.l |
|
| 14 |
|
ssrab2 |
|
| 15 |
4 14
|
eqsstri |
|
| 16 |
|
inss1 |
|
| 17 |
16 10
|
sselid |
|
| 18 |
15 17
|
sselid |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
dmeqd |
|
| 21 |
|
eqcom |
|
| 22 |
21
|
imbi1i |
|
| 23 |
|
eqcom |
|
| 24 |
23
|
imbi2i |
|
| 25 |
22 24
|
bitri |
|
| 26 |
20 25
|
mpbi |
|
| 27 |
26
|
cbviinv |
|
| 28 |
27
|
a1i |
|
| 29 |
28
|
iuneq2i |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
iineq1d |
|
| 32 |
31
|
cbviunv |
|
| 33 |
29 32
|
eqtri |
|
| 34 |
18 33
|
eleqtrdi |
|
| 35 |
|
eqid |
|
| 36 |
1 35
|
allbutfi |
|
| 37 |
36
|
biimpi |
|
| 38 |
34 37
|
syl |
|
| 39 |
10
|
elin2d |
|
| 40 |
|
oveq1 |
|
| 41 |
40
|
cbviinv |
|
| 42 |
41
|
a1i |
|
| 43 |
42
|
iuneq2i |
|
| 44 |
30
|
iineq1d |
|
| 45 |
44
|
cbviunv |
|
| 46 |
43 45
|
eqtri |
|
| 47 |
46
|
a1i |
|
| 48 |
47
|
iineq2i |
|
| 49 |
8 48
|
eqtri |
|
| 50 |
39 49
|
eleqtrdi |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
iineq2dv |
|
| 54 |
53
|
iuneq2d |
|
| 55 |
54
|
eleq2d |
|
| 56 |
50 11 55
|
eliind |
|
| 57 |
|
eqid |
|
| 58 |
1 57
|
allbutfi |
|
| 59 |
56 58
|
sylib |
|
| 60 |
38 59
|
jca |
|
| 61 |
1
|
rexanuz2 |
|
| 62 |
60 61
|
sylibr |
|
| 63 |
|
simpll |
|
| 64 |
|
simpr |
|
| 65 |
1
|
uztrn2 |
|
| 66 |
64 65
|
sylan |
|
| 67 |
|
simprl |
|
| 68 |
|
simp3 |
|
| 69 |
7
|
a1i |
|
| 70 |
|
oveq12 |
|
| 71 |
70
|
fveq2d |
|
| 72 |
71
|
adantl |
|
| 73 |
|
simpr |
|
| 74 |
11
|
adantr |
|
| 75 |
|
fvexd |
|
| 76 |
69 72 73 74 75
|
ovmpod |
|
| 77 |
76
|
3adant3 |
|
| 78 |
68 77
|
eleqtrd |
|
| 79 |
78
|
3expa |
|
| 80 |
79
|
adantrl |
|
| 81 |
80 67
|
elind |
|
| 82 |
|
eqid |
|
| 83 |
82 2
|
rabexd |
|
| 84 |
83
|
ralrimivw |
|
| 85 |
84
|
a1d |
|
| 86 |
85
|
imp |
|
| 87 |
86
|
ralrimiva |
|
| 88 |
6
|
fnmpo |
|
| 89 |
87 88
|
syl |
|
| 90 |
89
|
adantr |
|
| 91 |
|
fnovrn |
|
| 92 |
90 73 74 91
|
syl3anc |
|
| 93 |
|
ovex |
|
| 94 |
|
eleq1 |
|
| 95 |
94
|
anbi2d |
|
| 96 |
|
fveq2 |
|
| 97 |
|
id |
|
| 98 |
96 97
|
eleq12d |
|
| 99 |
95 98
|
imbi12d |
|
| 100 |
93 99 9
|
vtocl |
|
| 101 |
92 100
|
syldan |
|
| 102 |
6
|
a1i |
|
| 103 |
26
|
adantr |
|
| 104 |
19
|
fveq1d |
|
| 105 |
21
|
imbi1i |
|
| 106 |
|
eqcom |
|
| 107 |
106
|
imbi2i |
|
| 108 |
105 107
|
bitri |
|
| 109 |
104 108
|
mpbi |
|
| 110 |
109
|
adantr |
|
| 111 |
|
oveq2 |
|
| 112 |
111
|
oveq2d |
|
| 113 |
112
|
adantl |
|
| 114 |
110 113
|
breq12d |
|
| 115 |
103 114
|
rabeqbidv |
|
| 116 |
26
|
ineq2d |
|
| 117 |
116
|
adantr |
|
| 118 |
115 117
|
eqeq12d |
|
| 119 |
118
|
rabbidv |
|
| 120 |
119
|
adantl |
|
| 121 |
|
eqid |
|
| 122 |
121 2
|
rabexd |
|
| 123 |
122
|
adantr |
|
| 124 |
102 120 73 74 123
|
ovmpod |
|
| 125 |
101 124
|
eleqtrd |
|
| 126 |
|
ineq1 |
|
| 127 |
126
|
eqeq2d |
|
| 128 |
127
|
elrab |
|
| 129 |
125 128
|
sylib |
|
| 130 |
129
|
simprd |
|
| 131 |
130
|
eqcomd |
|
| 132 |
131
|
adantr |
|
| 133 |
81 132
|
eleqtrd |
|
| 134 |
|
fveq2 |
|
| 135 |
|
eqidd |
|
| 136 |
134 135
|
breq12d |
|
| 137 |
136
|
elrab |
|
| 138 |
133 137
|
sylib |
|
| 139 |
138
|
simprd |
|
| 140 |
67 139
|
jca |
|
| 141 |
140
|
ex |
|
| 142 |
63 66 141
|
syl2anc |
|
| 143 |
142
|
ralimdva |
|
| 144 |
143
|
reximdva |
|
| 145 |
62 144
|
mpd |
|
| 146 |
|
simprl |
|
| 147 |
|
eleq1 |
|
| 148 |
147
|
anbi2d |
|
| 149 |
|
fveq2 |
|
| 150 |
149 26
|
feq12d |
|
| 151 |
148 150
|
imbi12d |
|
| 152 |
2
|
adantr |
|
| 153 |
|
eqid |
|
| 154 |
152 3 153
|
smff |
|
| 155 |
151 154
|
chvarvv |
|
| 156 |
155
|
adantr |
|
| 157 |
|
simpr |
|
| 158 |
156 157
|
ffvelcdmd |
|
| 159 |
158
|
adantrr |
|
| 160 |
11
|
nnrecred |
|
| 161 |
5 160
|
readdcld |
|
| 162 |
161
|
ad2antrr |
|
| 163 |
12
|
rpred |
|
| 164 |
5 163
|
readdcld |
|
| 165 |
164
|
ad2antrr |
|
| 166 |
|
simprr |
|
| 167 |
160 163 5 13
|
ltadd2dd |
|
| 168 |
167
|
ad2antrr |
|
| 169 |
159 162 165 166 168
|
lttrd |
|
| 170 |
146 169
|
jca |
|
| 171 |
170
|
ex |
|
| 172 |
63 66 171
|
syl2anc |
|
| 173 |
172
|
ralimdva |
|
| 174 |
173
|
reximdva |
|
| 175 |
145 174
|
mpd |
|