Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem3.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
smflimlem3.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smflimlem3.m |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
4 |
|
smflimlem3.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
5 |
|
smflimlem3.a |
|- ( ph -> A e. RR ) |
6 |
|
smflimlem3.p |
|- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
7 |
|
smflimlem3.h |
|- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) |
8 |
|
smflimlem3.i |
|- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) |
9 |
|
smflimlem3.c |
|- ( ( ph /\ y e. ran P ) -> ( C ` y ) e. y ) |
10 |
|
smflimlem3.x |
|- ( ph -> X e. ( D i^i I ) ) |
11 |
|
smflimlem3.k |
|- ( ph -> K e. NN ) |
12 |
|
smflimlem3.y |
|- ( ph -> Y e. RR+ ) |
13 |
|
smflimlem3.l |
|- ( ph -> ( 1 / K ) < Y ) |
14 |
|
ssrab2 |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
15 |
4 14
|
eqsstri |
|- D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
16 |
|
inss1 |
|- ( D i^i I ) C_ D |
17 |
16 10
|
sselid |
|- ( ph -> X e. D ) |
18 |
15 17
|
sselid |
|- ( ph -> X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
19 |
|
fveq2 |
|- ( i = m -> ( F ` i ) = ( F ` m ) ) |
20 |
19
|
dmeqd |
|- ( i = m -> dom ( F ` i ) = dom ( F ` m ) ) |
21 |
|
eqcom |
|- ( i = m <-> m = i ) |
22 |
21
|
imbi1i |
|- ( ( i = m -> dom ( F ` i ) = dom ( F ` m ) ) <-> ( m = i -> dom ( F ` i ) = dom ( F ` m ) ) ) |
23 |
|
eqcom |
|- ( dom ( F ` i ) = dom ( F ` m ) <-> dom ( F ` m ) = dom ( F ` i ) ) |
24 |
23
|
imbi2i |
|- ( ( m = i -> dom ( F ` i ) = dom ( F ` m ) ) <-> ( m = i -> dom ( F ` m ) = dom ( F ` i ) ) ) |
25 |
22 24
|
bitri |
|- ( ( i = m -> dom ( F ` i ) = dom ( F ` m ) ) <-> ( m = i -> dom ( F ` m ) = dom ( F ` i ) ) ) |
26 |
20 25
|
mpbi |
|- ( m = i -> dom ( F ` m ) = dom ( F ` i ) ) |
27 |
26
|
cbviinv |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ i e. ( ZZ>= ` n ) dom ( F ` i ) |
28 |
27
|
a1i |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ i e. ( ZZ>= ` n ) dom ( F ` i ) ) |
29 |
28
|
iuneq2i |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ n e. Z |^|_ i e. ( ZZ>= ` n ) dom ( F ` i ) |
30 |
|
fveq2 |
|- ( n = m -> ( ZZ>= ` n ) = ( ZZ>= ` m ) ) |
31 |
30
|
iineq1d |
|- ( n = m -> |^|_ i e. ( ZZ>= ` n ) dom ( F ` i ) = |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) ) |
32 |
31
|
cbviunv |
|- U_ n e. Z |^|_ i e. ( ZZ>= ` n ) dom ( F ` i ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
33 |
29 32
|
eqtri |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
34 |
18 33
|
eleqtrdi |
|- ( ph -> X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) ) |
35 |
|
eqid |
|- U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) |
36 |
1 35
|
allbutfi |
|- ( X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) <-> E. m e. Z A. i e. ( ZZ>= ` m ) X e. dom ( F ` i ) ) |
37 |
36
|
biimpi |
|- ( X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) dom ( F ` i ) -> E. m e. Z A. i e. ( ZZ>= ` m ) X e. dom ( F ` i ) ) |
38 |
34 37
|
syl |
|- ( ph -> E. m e. Z A. i e. ( ZZ>= ` m ) X e. dom ( F ` i ) ) |
39 |
10
|
elin2d |
|- ( ph -> X e. I ) |
40 |
|
oveq1 |
|- ( m = i -> ( m H k ) = ( i H k ) ) |
41 |
40
|
cbviinv |
|- |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ i e. ( ZZ>= ` n ) ( i H k ) |
42 |
41
|
a1i |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ i e. ( ZZ>= ` n ) ( i H k ) ) |
43 |
42
|
iuneq2i |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i H k ) |
44 |
30
|
iineq1d |
|- ( n = m -> |^|_ i e. ( ZZ>= ` n ) ( i H k ) = |^|_ i e. ( ZZ>= ` m ) ( i H k ) ) |
45 |
44
|
cbviunv |
|- U_ n e. Z |^|_ i e. ( ZZ>= ` n ) ( i H k ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) |
46 |
43 45
|
eqtri |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) |
47 |
46
|
a1i |
|- ( k e. NN -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) ) |
48 |
47
|
iineq2i |
|- |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) = |^|_ k e. NN U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) |
49 |
8 48
|
eqtri |
|- I = |^|_ k e. NN U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) |
50 |
39 49
|
eleqtrdi |
|- ( ph -> X e. |^|_ k e. NN U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) ) |
51 |
|
oveq2 |
|- ( k = K -> ( i H k ) = ( i H K ) ) |
52 |
51
|
adantr |
|- ( ( k = K /\ i e. ( ZZ>= ` m ) ) -> ( i H k ) = ( i H K ) ) |
53 |
52
|
iineq2dv |
|- ( k = K -> |^|_ i e. ( ZZ>= ` m ) ( i H k ) = |^|_ i e. ( ZZ>= ` m ) ( i H K ) ) |
54 |
53
|
iuneq2d |
|- ( k = K -> U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H K ) ) |
55 |
54
|
eleq2d |
|- ( k = K -> ( X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H k ) <-> X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H K ) ) ) |
56 |
50 11 55
|
eliind |
|- ( ph -> X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H K ) ) |
57 |
|
eqid |
|- U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H K ) = U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H K ) |
58 |
1 57
|
allbutfi |
|- ( X e. U_ m e. Z |^|_ i e. ( ZZ>= ` m ) ( i H K ) <-> E. m e. Z A. i e. ( ZZ>= ` m ) X e. ( i H K ) ) |
59 |
56 58
|
sylib |
|- ( ph -> E. m e. Z A. i e. ( ZZ>= ` m ) X e. ( i H K ) ) |
60 |
38 59
|
jca |
|- ( ph -> ( E. m e. Z A. i e. ( ZZ>= ` m ) X e. dom ( F ` i ) /\ E. m e. Z A. i e. ( ZZ>= ` m ) X e. ( i H K ) ) ) |
61 |
1
|
rexanuz2 |
|- ( E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) <-> ( E. m e. Z A. i e. ( ZZ>= ` m ) X e. dom ( F ` i ) /\ E. m e. Z A. i e. ( ZZ>= ` m ) X e. ( i H K ) ) ) |
62 |
60 61
|
sylibr |
|- ( ph -> E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) |
63 |
|
simpll |
|- ( ( ( ph /\ m e. Z ) /\ i e. ( ZZ>= ` m ) ) -> ph ) |
64 |
|
simpr |
|- ( ( ph /\ m e. Z ) -> m e. Z ) |
65 |
1
|
uztrn2 |
|- ( ( m e. Z /\ i e. ( ZZ>= ` m ) ) -> i e. Z ) |
66 |
64 65
|
sylan |
|- ( ( ( ph /\ m e. Z ) /\ i e. ( ZZ>= ` m ) ) -> i e. Z ) |
67 |
|
simprl |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> X e. dom ( F ` i ) ) |
68 |
|
simp3 |
|- ( ( ph /\ i e. Z /\ X e. ( i H K ) ) -> X e. ( i H K ) ) |
69 |
7
|
a1i |
|- ( ( ph /\ i e. Z ) -> H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) ) |
70 |
|
oveq12 |
|- ( ( m = i /\ k = K ) -> ( m P k ) = ( i P K ) ) |
71 |
70
|
fveq2d |
|- ( ( m = i /\ k = K ) -> ( C ` ( m P k ) ) = ( C ` ( i P K ) ) ) |
72 |
71
|
adantl |
|- ( ( ( ph /\ i e. Z ) /\ ( m = i /\ k = K ) ) -> ( C ` ( m P k ) ) = ( C ` ( i P K ) ) ) |
73 |
|
simpr |
|- ( ( ph /\ i e. Z ) -> i e. Z ) |
74 |
11
|
adantr |
|- ( ( ph /\ i e. Z ) -> K e. NN ) |
75 |
|
fvexd |
|- ( ( ph /\ i e. Z ) -> ( C ` ( i P K ) ) e. _V ) |
76 |
69 72 73 74 75
|
ovmpod |
|- ( ( ph /\ i e. Z ) -> ( i H K ) = ( C ` ( i P K ) ) ) |
77 |
76
|
3adant3 |
|- ( ( ph /\ i e. Z /\ X e. ( i H K ) ) -> ( i H K ) = ( C ` ( i P K ) ) ) |
78 |
68 77
|
eleqtrd |
|- ( ( ph /\ i e. Z /\ X e. ( i H K ) ) -> X e. ( C ` ( i P K ) ) ) |
79 |
78
|
3expa |
|- ( ( ( ph /\ i e. Z ) /\ X e. ( i H K ) ) -> X e. ( C ` ( i P K ) ) ) |
80 |
79
|
adantrl |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> X e. ( C ` ( i P K ) ) ) |
81 |
80 67
|
elind |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> X e. ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) ) |
82 |
|
eqid |
|- { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
83 |
82 2
|
rabexd |
|- ( ph -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
84 |
83
|
ralrimivw |
|- ( ph -> A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
85 |
84
|
a1d |
|- ( ph -> ( m e. Z -> A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) ) |
86 |
85
|
imp |
|- ( ( ph /\ m e. Z ) -> A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
87 |
86
|
ralrimiva |
|- ( ph -> A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
88 |
6
|
fnmpo |
|- ( A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V -> P Fn ( Z X. NN ) ) |
89 |
87 88
|
syl |
|- ( ph -> P Fn ( Z X. NN ) ) |
90 |
89
|
adantr |
|- ( ( ph /\ i e. Z ) -> P Fn ( Z X. NN ) ) |
91 |
|
fnovrn |
|- ( ( P Fn ( Z X. NN ) /\ i e. Z /\ K e. NN ) -> ( i P K ) e. ran P ) |
92 |
90 73 74 91
|
syl3anc |
|- ( ( ph /\ i e. Z ) -> ( i P K ) e. ran P ) |
93 |
|
ovex |
|- ( i P K ) e. _V |
94 |
|
eleq1 |
|- ( y = ( i P K ) -> ( y e. ran P <-> ( i P K ) e. ran P ) ) |
95 |
94
|
anbi2d |
|- ( y = ( i P K ) -> ( ( ph /\ y e. ran P ) <-> ( ph /\ ( i P K ) e. ran P ) ) ) |
96 |
|
fveq2 |
|- ( y = ( i P K ) -> ( C ` y ) = ( C ` ( i P K ) ) ) |
97 |
|
id |
|- ( y = ( i P K ) -> y = ( i P K ) ) |
98 |
96 97
|
eleq12d |
|- ( y = ( i P K ) -> ( ( C ` y ) e. y <-> ( C ` ( i P K ) ) e. ( i P K ) ) ) |
99 |
95 98
|
imbi12d |
|- ( y = ( i P K ) -> ( ( ( ph /\ y e. ran P ) -> ( C ` y ) e. y ) <-> ( ( ph /\ ( i P K ) e. ran P ) -> ( C ` ( i P K ) ) e. ( i P K ) ) ) ) |
100 |
93 99 9
|
vtocl |
|- ( ( ph /\ ( i P K ) e. ran P ) -> ( C ` ( i P K ) ) e. ( i P K ) ) |
101 |
92 100
|
syldan |
|- ( ( ph /\ i e. Z ) -> ( C ` ( i P K ) ) e. ( i P K ) ) |
102 |
6
|
a1i |
|- ( ( ph /\ i e. Z ) -> P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) ) |
103 |
26
|
adantr |
|- ( ( m = i /\ k = K ) -> dom ( F ` m ) = dom ( F ` i ) ) |
104 |
19
|
fveq1d |
|- ( i = m -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) |
105 |
21
|
imbi1i |
|- ( ( i = m -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) <-> ( m = i -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) ) |
106 |
|
eqcom |
|- ( ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) <-> ( ( F ` m ) ` x ) = ( ( F ` i ) ` x ) ) |
107 |
106
|
imbi2i |
|- ( ( m = i -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) <-> ( m = i -> ( ( F ` m ) ` x ) = ( ( F ` i ) ` x ) ) ) |
108 |
105 107
|
bitri |
|- ( ( i = m -> ( ( F ` i ) ` x ) = ( ( F ` m ) ` x ) ) <-> ( m = i -> ( ( F ` m ) ` x ) = ( ( F ` i ) ` x ) ) ) |
109 |
104 108
|
mpbi |
|- ( m = i -> ( ( F ` m ) ` x ) = ( ( F ` i ) ` x ) ) |
110 |
109
|
adantr |
|- ( ( m = i /\ k = K ) -> ( ( F ` m ) ` x ) = ( ( F ` i ) ` x ) ) |
111 |
|
oveq2 |
|- ( k = K -> ( 1 / k ) = ( 1 / K ) ) |
112 |
111
|
oveq2d |
|- ( k = K -> ( A + ( 1 / k ) ) = ( A + ( 1 / K ) ) ) |
113 |
112
|
adantl |
|- ( ( m = i /\ k = K ) -> ( A + ( 1 / k ) ) = ( A + ( 1 / K ) ) ) |
114 |
110 113
|
breq12d |
|- ( ( m = i /\ k = K ) -> ( ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) <-> ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) ) ) |
115 |
103 114
|
rabeqbidv |
|- ( ( m = i /\ k = K ) -> { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } ) |
116 |
26
|
ineq2d |
|- ( m = i -> ( s i^i dom ( F ` m ) ) = ( s i^i dom ( F ` i ) ) ) |
117 |
116
|
adantr |
|- ( ( m = i /\ k = K ) -> ( s i^i dom ( F ` m ) ) = ( s i^i dom ( F ` i ) ) ) |
118 |
115 117
|
eqeq12d |
|- ( ( m = i /\ k = K ) -> ( { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) <-> { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) ) ) |
119 |
118
|
rabbidv |
|- ( ( m = i /\ k = K ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } ) |
120 |
119
|
adantl |
|- ( ( ( ph /\ i e. Z ) /\ ( m = i /\ k = K ) ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } ) |
121 |
|
eqid |
|- { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } = { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } |
122 |
121 2
|
rabexd |
|- ( ph -> { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } e. _V ) |
123 |
122
|
adantr |
|- ( ( ph /\ i e. Z ) -> { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } e. _V ) |
124 |
102 120 73 74 123
|
ovmpod |
|- ( ( ph /\ i e. Z ) -> ( i P K ) = { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } ) |
125 |
101 124
|
eleqtrd |
|- ( ( ph /\ i e. Z ) -> ( C ` ( i P K ) ) e. { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } ) |
126 |
|
ineq1 |
|- ( s = ( C ` ( i P K ) ) -> ( s i^i dom ( F ` i ) ) = ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) ) |
127 |
126
|
eqeq2d |
|- ( s = ( C ` ( i P K ) ) -> ( { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) <-> { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) ) ) |
128 |
127
|
elrab |
|- ( ( C ` ( i P K ) ) e. { s e. S | { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( s i^i dom ( F ` i ) ) } <-> ( ( C ` ( i P K ) ) e. S /\ { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) ) ) |
129 |
125 128
|
sylib |
|- ( ( ph /\ i e. Z ) -> ( ( C ` ( i P K ) ) e. S /\ { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) ) ) |
130 |
129
|
simprd |
|- ( ( ph /\ i e. Z ) -> { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } = ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) ) |
131 |
130
|
eqcomd |
|- ( ( ph /\ i e. Z ) -> ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) = { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } ) |
132 |
131
|
adantr |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> ( ( C ` ( i P K ) ) i^i dom ( F ` i ) ) = { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } ) |
133 |
81 132
|
eleqtrd |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> X e. { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } ) |
134 |
|
fveq2 |
|- ( x = X -> ( ( F ` i ) ` x ) = ( ( F ` i ) ` X ) ) |
135 |
|
eqidd |
|- ( x = X -> ( A + ( 1 / K ) ) = ( A + ( 1 / K ) ) ) |
136 |
134 135
|
breq12d |
|- ( x = X -> ( ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) <-> ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) |
137 |
136
|
elrab |
|- ( X e. { x e. dom ( F ` i ) | ( ( F ` i ) ` x ) < ( A + ( 1 / K ) ) } <-> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) |
138 |
133 137
|
sylib |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) |
139 |
138
|
simprd |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) |
140 |
67 139
|
jca |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) |
141 |
140
|
ex |
|- ( ( ph /\ i e. Z ) -> ( ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) ) |
142 |
63 66 141
|
syl2anc |
|- ( ( ( ph /\ m e. Z ) /\ i e. ( ZZ>= ` m ) ) -> ( ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) ) |
143 |
142
|
ralimdva |
|- ( ( ph /\ m e. Z ) -> ( A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) -> A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) ) |
144 |
143
|
reximdva |
|- ( ph -> ( E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ X e. ( i H K ) ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) ) |
145 |
62 144
|
mpd |
|- ( ph -> E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) |
146 |
|
simprl |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> X e. dom ( F ` i ) ) |
147 |
|
eleq1 |
|- ( m = i -> ( m e. Z <-> i e. Z ) ) |
148 |
147
|
anbi2d |
|- ( m = i -> ( ( ph /\ m e. Z ) <-> ( ph /\ i e. Z ) ) ) |
149 |
|
fveq2 |
|- ( m = i -> ( F ` m ) = ( F ` i ) ) |
150 |
149 26
|
feq12d |
|- ( m = i -> ( ( F ` m ) : dom ( F ` m ) --> RR <-> ( F ` i ) : dom ( F ` i ) --> RR ) ) |
151 |
148 150
|
imbi12d |
|- ( m = i -> ( ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) <-> ( ( ph /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) ) ) |
152 |
2
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
153 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
154 |
152 3 153
|
smff |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
155 |
151 154
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( F ` i ) : dom ( F ` i ) --> RR ) |
156 |
155
|
adantr |
|- ( ( ( ph /\ i e. Z ) /\ X e. dom ( F ` i ) ) -> ( F ` i ) : dom ( F ` i ) --> RR ) |
157 |
|
simpr |
|- ( ( ( ph /\ i e. Z ) /\ X e. dom ( F ` i ) ) -> X e. dom ( F ` i ) ) |
158 |
156 157
|
ffvelrnd |
|- ( ( ( ph /\ i e. Z ) /\ X e. dom ( F ` i ) ) -> ( ( F ` i ) ` X ) e. RR ) |
159 |
158
|
adantrr |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( ( F ` i ) ` X ) e. RR ) |
160 |
11
|
nnrecred |
|- ( ph -> ( 1 / K ) e. RR ) |
161 |
5 160
|
readdcld |
|- ( ph -> ( A + ( 1 / K ) ) e. RR ) |
162 |
161
|
ad2antrr |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( A + ( 1 / K ) ) e. RR ) |
163 |
12
|
rpred |
|- ( ph -> Y e. RR ) |
164 |
5 163
|
readdcld |
|- ( ph -> ( A + Y ) e. RR ) |
165 |
164
|
ad2antrr |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( A + Y ) e. RR ) |
166 |
|
simprr |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) |
167 |
160 163 5 13
|
ltadd2dd |
|- ( ph -> ( A + ( 1 / K ) ) < ( A + Y ) ) |
168 |
167
|
ad2antrr |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( A + ( 1 / K ) ) < ( A + Y ) ) |
169 |
159 162 165 166 168
|
lttrd |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( ( F ` i ) ` X ) < ( A + Y ) ) |
170 |
146 169
|
jca |
|- ( ( ( ph /\ i e. Z ) /\ ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + Y ) ) ) |
171 |
170
|
ex |
|- ( ( ph /\ i e. Z ) -> ( ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + Y ) ) ) ) |
172 |
63 66 171
|
syl2anc |
|- ( ( ( ph /\ m e. Z ) /\ i e. ( ZZ>= ` m ) ) -> ( ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) -> ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + Y ) ) ) ) |
173 |
172
|
ralimdva |
|- ( ( ph /\ m e. Z ) -> ( A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) -> A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + Y ) ) ) ) |
174 |
173
|
reximdva |
|- ( ph -> ( E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + ( 1 / K ) ) ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + Y ) ) ) ) |
175 |
145 174
|
mpd |
|- ( ph -> E. m e. Z A. i e. ( ZZ>= ` m ) ( X e. dom ( F ` i ) /\ ( ( F ` i ) ` X ) < ( A + Y ) ) ) |