| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimabslt.p |
|- F/ m ph |
| 2 |
|
fnlimabslt.f |
|- F/_ m F |
| 3 |
|
fnlimabslt.n |
|- F/_ x F |
| 4 |
|
fnlimabslt.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
fnlimabslt.z |
|- Z = ( ZZ>= ` M ) |
| 6 |
|
fnlimabslt.b |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 7 |
|
fnlimabslt.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 8 |
|
fnlimabslt.g |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 9 |
|
fnlimabslt.x |
|- ( ph -> X e. D ) |
| 10 |
|
fnlimabslt.y |
|- ( ph -> Y e. RR+ ) |
| 11 |
|
eqid |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 12 |
|
nfcv |
|- F/_ x Z |
| 13 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
| 14 |
|
nfcv |
|- F/_ x m |
| 15 |
3 14
|
nffv |
|- F/_ x ( F ` m ) |
| 16 |
15
|
nfdm |
|- F/_ x dom ( F ` m ) |
| 17 |
13 16
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 18 |
12 17
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 19 |
|
nfcv |
|- F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 20 |
|
nfv |
|- F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
| 21 |
|
nfcv |
|- F/_ x y |
| 22 |
15 21
|
nffv |
|- F/_ x ( ( F ` m ) ` y ) |
| 23 |
12 22
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) |
| 24 |
|
nfcv |
|- F/_ x dom ~~> |
| 25 |
23 24
|
nfel |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> |
| 26 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
| 27 |
26
|
mpteq2dv |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
| 28 |
27
|
eleq1d |
|- ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) |
| 29 |
18 19 20 25 28
|
cbvrabw |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
| 30 |
|
ssrab2 |
|- { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 31 |
29 30
|
eqsstri |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 32 |
7 31
|
eqsstri |
|- D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 33 |
32 9
|
sselid |
|- ( ph -> X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 34 |
1 5 6 11 33
|
allbutfifvre |
|- ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR ) |
| 35 |
|
nfv |
|- F/ j ph |
| 36 |
|
nfcv |
|- F/_ j ( m e. Z |-> ( ( F ` m ) ` X ) ) |
| 37 |
3 7 8 9
|
fnlimcnv |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( G ` X ) ) |
| 38 |
|
nfcv |
|- F/_ l ( ( F ` m ) ` X ) |
| 39 |
|
nfcv |
|- F/_ m l |
| 40 |
2 39
|
nffv |
|- F/_ m ( F ` l ) |
| 41 |
|
nfcv |
|- F/_ m X |
| 42 |
40 41
|
nffv |
|- F/_ m ( ( F ` l ) ` X ) |
| 43 |
|
fveq2 |
|- ( m = l -> ( F ` m ) = ( F ` l ) ) |
| 44 |
43
|
fveq1d |
|- ( m = l -> ( ( F ` m ) ` X ) = ( ( F ` l ) ` X ) ) |
| 45 |
38 42 44
|
cbvmpt |
|- ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( l e. Z |-> ( ( F ` l ) ` X ) ) |
| 46 |
|
fveq2 |
|- ( l = j -> ( F ` l ) = ( F ` j ) ) |
| 47 |
46
|
fveq1d |
|- ( l = j -> ( ( F ` l ) ` X ) = ( ( F ` j ) ` X ) ) |
| 48 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 49 |
|
fvexd |
|- ( ( ph /\ j e. Z ) -> ( ( F ` j ) ` X ) e. _V ) |
| 50 |
45 47 48 49
|
fvmptd3 |
|- ( ( ph /\ j e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) ` X ) ) ` j ) = ( ( F ` j ) ` X ) ) |
| 51 |
35 36 5 4 37 50 10
|
climd |
|- ( ph -> E. n e. Z A. j e. ( ZZ>= ` n ) ( ( ( F ` j ) ` X ) e. CC /\ ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 52 |
|
nfv |
|- F/ j ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) |
| 53 |
|
nfcv |
|- F/_ m j |
| 54 |
2 53
|
nffv |
|- F/_ m ( F ` j ) |
| 55 |
54 41
|
nffv |
|- F/_ m ( ( F ` j ) ` X ) |
| 56 |
|
nfcv |
|- F/_ m CC |
| 57 |
55 56
|
nfel |
|- F/ m ( ( F ` j ) ` X ) e. CC |
| 58 |
|
nfcv |
|- F/_ m abs |
| 59 |
|
nfcv |
|- F/_ m - |
| 60 |
|
nfmpt1 |
|- F/_ m ( m e. Z |-> ( ( F ` m ) ` x ) ) |
| 61 |
|
nfcv |
|- F/_ m dom ~~> |
| 62 |
60 61
|
nfel |
|- F/ m ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
| 63 |
|
nfcv |
|- F/_ m Z |
| 64 |
|
nfii1 |
|- F/_ m |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 65 |
63 64
|
nfiun |
|- F/_ m U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 66 |
62 65
|
nfrabw |
|- F/_ m { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 67 |
7 66
|
nfcxfr |
|- F/_ m D |
| 68 |
|
nfcv |
|- F/_ m ~~> |
| 69 |
68 60
|
nffv |
|- F/_ m ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
| 70 |
67 69
|
nfmpt |
|- F/_ m ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 71 |
8 70
|
nfcxfr |
|- F/_ m G |
| 72 |
71 41
|
nffv |
|- F/_ m ( G ` X ) |
| 73 |
55 59 72
|
nfov |
|- F/_ m ( ( ( F ` j ) ` X ) - ( G ` X ) ) |
| 74 |
58 73
|
nffv |
|- F/_ m ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) |
| 75 |
|
nfcv |
|- F/_ m < |
| 76 |
|
nfcv |
|- F/_ m Y |
| 77 |
74 75 76
|
nfbr |
|- F/ m ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y |
| 78 |
57 77
|
nfan |
|- F/ m ( ( ( F ` j ) ` X ) e. CC /\ ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y ) |
| 79 |
|
fveq2 |
|- ( m = j -> ( F ` m ) = ( F ` j ) ) |
| 80 |
79
|
fveq1d |
|- ( m = j -> ( ( F ` m ) ` X ) = ( ( F ` j ) ` X ) ) |
| 81 |
80
|
eleq1d |
|- ( m = j -> ( ( ( F ` m ) ` X ) e. CC <-> ( ( F ` j ) ` X ) e. CC ) ) |
| 82 |
80
|
fvoveq1d |
|- ( m = j -> ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) = ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) ) |
| 83 |
82
|
breq1d |
|- ( m = j -> ( ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y <-> ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 84 |
81 83
|
anbi12d |
|- ( m = j -> ( ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) <-> ( ( ( F ` j ) ` X ) e. CC /\ ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y ) ) ) |
| 85 |
52 78 84
|
cbvralw |
|- ( A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) <-> A. j e. ( ZZ>= ` n ) ( ( ( F ` j ) ` X ) e. CC /\ ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 86 |
85
|
rexbii |
|- ( E. n e. Z A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) <-> E. n e. Z A. j e. ( ZZ>= ` n ) ( ( ( F ` j ) ` X ) e. CC /\ ( abs ` ( ( ( F ` j ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 87 |
51 86
|
sylibr |
|- ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 88 |
|
nfv |
|- F/ m n e. Z |
| 89 |
1 88
|
nfan |
|- F/ m ( ph /\ n e. Z ) |
| 90 |
|
simpr |
|- ( ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) -> ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) |
| 91 |
90
|
a1i |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) -> ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 92 |
89 91
|
ralimdaa |
|- ( ( ph /\ n e. Z ) -> ( A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) -> A. m e. ( ZZ>= ` n ) ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 93 |
92
|
reximdva |
|- ( ph -> ( E. n e. Z A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. CC /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) -> E. n e. Z A. m e. ( ZZ>= ` n ) ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 94 |
87 93
|
mpd |
|- ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) |
| 95 |
34 94
|
jca |
|- ( ph -> ( E. n e. Z A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR /\ E. n e. Z A. m e. ( ZZ>= ` n ) ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 96 |
5
|
rexanuz2 |
|- ( E. n e. Z A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. RR /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) <-> ( E. n e. Z A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR /\ E. n e. Z A. m e. ( ZZ>= ` n ) ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |
| 97 |
95 96
|
sylibr |
|- ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) ( ( ( F ` m ) ` X ) e. RR /\ ( abs ` ( ( ( F ` m ) ` X ) - ( G ` X ) ) ) < Y ) ) |