| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimcnv.1 |
|- F/_ x F |
| 2 |
|
fnlimcnv.2 |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 3 |
|
fnlimcnv.3 |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 4 |
|
fnlimcnv.4 |
|- ( ph -> X e. D ) |
| 5 |
|
fveq2 |
|- ( y = X -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` X ) ) |
| 6 |
5
|
mpteq2dv |
|- ( y = X -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) |
| 7 |
6
|
eleq1d |
|- ( y = X -> ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
| 8 |
|
nfcv |
|- F/_ x Z |
| 9 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
| 10 |
|
nfcv |
|- F/_ x m |
| 11 |
1 10
|
nffv |
|- F/_ x ( F ` m ) |
| 12 |
11
|
nfdm |
|- F/_ x dom ( F ` m ) |
| 13 |
9 12
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 14 |
8 13
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 15 |
|
nfcv |
|- F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 16 |
|
nfv |
|- F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
| 17 |
|
nfcv |
|- F/_ x y |
| 18 |
11 17
|
nffv |
|- F/_ x ( ( F ` m ) ` y ) |
| 19 |
8 18
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) |
| 20 |
|
nfcv |
|- F/_ x dom ~~> |
| 21 |
19 20
|
nfel |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> |
| 22 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
| 23 |
22
|
mpteq2dv |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
| 24 |
23
|
eleq1d |
|- ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) |
| 25 |
14 15 16 21 24
|
cbvrabw |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
| 26 |
2 25
|
eqtri |
|- D = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
| 27 |
7 26
|
elrab2 |
|- ( X e. D <-> ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
| 28 |
4 27
|
sylib |
|- ( ph -> ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
| 29 |
28
|
simprd |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) |
| 30 |
|
climdm |
|- ( ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 31 |
29 30
|
sylib |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 32 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 33 |
2 32
|
nfcxfr |
|- F/_ x D |
| 34 |
33 1 3 4
|
fnlimfv |
|- ( ph -> ( G ` X ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 35 |
34
|
eqcomd |
|- ( ph -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) = ( G ` X ) ) |
| 36 |
31 35
|
breqtrd |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( G ` X ) ) |