| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimcnv.1 |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
fnlimcnv.2 |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 3 |
|
fnlimcnv.3 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 4 |
|
fnlimcnv.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 6 |
5
|
mpteq2dv |
⊢ ( 𝑦 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑛 ) |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
| 11 |
1 10
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
| 12 |
11
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
| 13 |
9 12
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 14 |
8 13
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 18 |
11 17
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) |
| 19 |
8 18
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑥 dom ⇝ |
| 21 |
19 20
|
nfel |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 23 |
22
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) ) |
| 25 |
14 15 16 21 24
|
cbvrabw |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } |
| 26 |
2 25
|
eqtri |
⊢ 𝐷 = { 𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ∈ dom ⇝ } |
| 27 |
7 26
|
elrab2 |
⊢ ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) ) |
| 28 |
4 27
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) ) |
| 29 |
28
|
simprd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) |
| 30 |
|
climdm |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ⇝ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 31 |
29 30
|
sylib |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ⇝ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 32 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 33 |
2 32
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 34 |
33 1 3 4
|
fnlimfv |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 35 |
34
|
eqcomd |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( 𝐺 ‘ 𝑋 ) ) |
| 36 |
31 35
|
breqtrd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ⇝ ( 𝐺 ‘ 𝑋 ) ) |