Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smflimlem5.1 | |- ( ph -> M e. ZZ ) |
|
smflimlem5.2 | |- Z = ( ZZ>= ` M ) |
||
smflimlem5.3 | |- ( ph -> S e. SAlg ) |
||
smflimlem5.4 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) |
||
smflimlem5.5 | |- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
||
smflimlem5.6 | |- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
||
smflimlem5.7 | |- ( ph -> A e. RR ) |
||
smflimlem5.8 | |- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
||
smflimlem5.9 | |- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) |
||
smflimlem5.10 | |- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) |
||
smflimlem5.11 | |- ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r ) |
||
Assertion | smflimlem5 | |- ( ph -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimlem5.1 | |- ( ph -> M e. ZZ ) |
|
2 | smflimlem5.2 | |- Z = ( ZZ>= ` M ) |
|
3 | smflimlem5.3 | |- ( ph -> S e. SAlg ) |
|
4 | smflimlem5.4 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) |
|
5 | smflimlem5.5 | |- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
|
6 | smflimlem5.6 | |- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
|
7 | smflimlem5.7 | |- ( ph -> A e. RR ) |
|
8 | smflimlem5.8 | |- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
|
9 | smflimlem5.9 | |- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) |
|
10 | smflimlem5.10 | |- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) |
|
11 | smflimlem5.11 | |- ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r ) |
|
12 | 2 3 4 5 6 7 8 9 10 11 | smflimlem2 | |- ( ph -> { x e. D | ( G ` x ) <_ A } C_ ( D i^i I ) ) |
13 | 1 2 3 4 5 6 7 8 9 10 11 | smflimlem4 | |- ( ph -> ( D i^i I ) C_ { x e. D | ( G ` x ) <_ A } ) |
14 | 12 13 | eqssd | |- ( ph -> { x e. D | ( G ` x ) <_ A } = ( D i^i I ) ) |
15 | 2 3 5 8 9 10 11 | smflimlem1 | |- ( ph -> ( D i^i I ) e. ( S |`t D ) ) |
16 | 14 15 | eqeltrd | |- ( ph -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) ) |