Metamath Proof Explorer


Theorem smflimlem5

Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem5.1
|- ( ph -> M e. ZZ )
smflimlem5.2
|- Z = ( ZZ>= ` M )
smflimlem5.3
|- ( ph -> S e. SAlg )
smflimlem5.4
|- ( ph -> F : Z --> ( SMblFn ` S ) )
smflimlem5.5
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> }
smflimlem5.6
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) )
smflimlem5.7
|- ( ph -> A e. RR )
smflimlem5.8
|- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } )
smflimlem5.9
|- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) )
smflimlem5.10
|- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k )
smflimlem5.11
|- ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r )
Assertion smflimlem5
|- ( ph -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smflimlem5.1
 |-  ( ph -> M e. ZZ )
2 smflimlem5.2
 |-  Z = ( ZZ>= ` M )
3 smflimlem5.3
 |-  ( ph -> S e. SAlg )
4 smflimlem5.4
 |-  ( ph -> F : Z --> ( SMblFn ` S ) )
5 smflimlem5.5
 |-  D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> }
6 smflimlem5.6
 |-  G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) )
7 smflimlem5.7
 |-  ( ph -> A e. RR )
8 smflimlem5.8
 |-  P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } )
9 smflimlem5.9
 |-  H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) )
10 smflimlem5.10
 |-  I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k )
11 smflimlem5.11
 |-  ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r )
12 2 3 4 5 6 7 8 9 10 11 smflimlem2
 |-  ( ph -> { x e. D | ( G ` x ) <_ A } C_ ( D i^i I ) )
13 1 2 3 4 5 6 7 8 9 10 11 smflimlem4
 |-  ( ph -> ( D i^i I ) C_ { x e. D | ( G ` x ) <_ A } )
14 12 13 eqssd
 |-  ( ph -> { x e. D | ( G ` x ) <_ A } = ( D i^i I ) )
15 2 3 5 8 9 10 11 smflimlem1
 |-  ( ph -> ( D i^i I ) e. ( S |`t D ) )
16 14 15 eqeltrd
 |-  ( ph -> { x e. D | ( G ` x ) <_ A } e. ( S |`t D ) )