Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem1.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
smflimlem1.2 |
|- ( ph -> S e. SAlg ) |
3 |
|
smflimlem1.3 |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
4 |
|
smflimlem1.4 |
|- P = ( m e. Z , k e. NN |-> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
5 |
|
smflimlem1.5 |
|- H = ( m e. Z , k e. NN |-> ( C ` ( m P k ) ) ) |
6 |
|
smflimlem1.6 |
|- I = |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) |
7 |
|
smflimlem1.7 |
|- ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r ) |
8 |
|
fvex |
|- ( ZZ>= ` M ) e. _V |
9 |
1 8
|
eqeltri |
|- Z e. _V |
10 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
11 |
1
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` M ) ) |
12 |
11
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` M ) ) |
13 |
10 12
|
sselid |
|- ( n e. Z -> n e. ZZ ) |
14 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
15 |
13 14
|
syl |
|- ( n e. Z -> n e. ( ZZ>= ` n ) ) |
16 |
15
|
ne0d |
|- ( n e. Z -> ( ZZ>= ` n ) =/= (/) ) |
17 |
|
fvex |
|- ( F ` m ) e. _V |
18 |
17
|
dmex |
|- dom ( F ` m ) e. _V |
19 |
18
|
rgenw |
|- A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V |
20 |
19
|
a1i |
|- ( n e. Z -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
21 |
|
iinexg |
|- ( ( ( ZZ>= ` n ) =/= (/) /\ A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
22 |
16 20 21
|
syl2anc |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
23 |
22
|
rgen |
|- A. n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V |
24 |
|
iunexg |
|- ( ( Z e. _V /\ A. n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
25 |
9 23 24
|
mp2an |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V |
26 |
25
|
rabex |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } e. _V |
27 |
3 26
|
eqeltri |
|- D e. _V |
28 |
27
|
a1i |
|- ( ph -> D e. _V ) |
29 |
|
nnct |
|- NN ~<_ _om |
30 |
29
|
a1i |
|- ( ph -> NN ~<_ _om ) |
31 |
|
nnn0 |
|- NN =/= (/) |
32 |
31
|
a1i |
|- ( ph -> NN =/= (/) ) |
33 |
2
|
adantr |
|- ( ( ph /\ k e. NN ) -> S e. SAlg ) |
34 |
1
|
uzct |
|- Z ~<_ _om |
35 |
34
|
a1i |
|- ( ( ph /\ k e. NN ) -> Z ~<_ _om ) |
36 |
33
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ n e. Z ) -> S e. SAlg ) |
37 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
38 |
37
|
uzct |
|- ( ZZ>= ` n ) ~<_ _om |
39 |
38
|
a1i |
|- ( ( ( ph /\ k e. NN ) /\ n e. Z ) -> ( ZZ>= ` n ) ~<_ _om ) |
40 |
16
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ n e. Z ) -> ( ZZ>= ` n ) =/= (/) ) |
41 |
|
simpll |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ph ) |
42 |
41
|
adantllr |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ph ) |
43 |
|
simpll |
|- ( ( ( k e. NN /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> k e. NN ) |
44 |
43
|
adantlll |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> k e. NN ) |
45 |
1
|
uztrn2 |
|- ( ( n e. Z /\ j e. ( ZZ>= ` n ) ) -> j e. Z ) |
46 |
45
|
ssd |
|- ( n e. Z -> ( ZZ>= ` n ) C_ Z ) |
47 |
46
|
sselda |
|- ( ( n e. Z /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
48 |
47
|
adantll |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
49 |
|
simp3 |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> m e. Z ) |
50 |
|
simp2 |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> k e. NN ) |
51 |
|
fvex |
|- ( C ` ( m P k ) ) e. _V |
52 |
51
|
a1i |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( C ` ( m P k ) ) e. _V ) |
53 |
5
|
ovmpt4g |
|- ( ( m e. Z /\ k e. NN /\ ( C ` ( m P k ) ) e. _V ) -> ( m H k ) = ( C ` ( m P k ) ) ) |
54 |
49 50 52 53
|
syl3anc |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( m H k ) = ( C ` ( m P k ) ) ) |
55 |
|
simp1 |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ph ) |
56 |
|
eqid |
|- { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } |
57 |
56 2
|
rabexd |
|- ( ph -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
58 |
55 57
|
syl |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
59 |
4
|
ovmpt4g |
|- ( ( m e. Z /\ k e. NN /\ { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) -> ( m P k ) = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
60 |
49 50 58 59
|
syl3anc |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( m P k ) = { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } ) |
61 |
|
ssrab2 |
|- { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } C_ S |
62 |
60 61
|
eqsstrdi |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( m P k ) C_ S ) |
63 |
57
|
ralrimivw |
|- ( ph -> A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
64 |
63
|
ralrimivw |
|- ( ph -> A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
65 |
64
|
3ad2ant1 |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) |
66 |
4
|
elrnmpoid |
|- ( ( m e. Z /\ k e. NN /\ A. m e. Z A. k e. NN { s e. S | { x e. dom ( F ` m ) | ( ( F ` m ) ` x ) < ( A + ( 1 / k ) ) } = ( s i^i dom ( F ` m ) ) } e. _V ) -> ( m P k ) e. ran P ) |
67 |
49 50 65 66
|
syl3anc |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( m P k ) e. ran P ) |
68 |
|
ovex |
|- ( m P k ) e. _V |
69 |
|
eleq1 |
|- ( r = ( m P k ) -> ( r e. ran P <-> ( m P k ) e. ran P ) ) |
70 |
69
|
anbi2d |
|- ( r = ( m P k ) -> ( ( ph /\ r e. ran P ) <-> ( ph /\ ( m P k ) e. ran P ) ) ) |
71 |
|
fveq2 |
|- ( r = ( m P k ) -> ( C ` r ) = ( C ` ( m P k ) ) ) |
72 |
|
id |
|- ( r = ( m P k ) -> r = ( m P k ) ) |
73 |
71 72
|
eleq12d |
|- ( r = ( m P k ) -> ( ( C ` r ) e. r <-> ( C ` ( m P k ) ) e. ( m P k ) ) ) |
74 |
70 73
|
imbi12d |
|- ( r = ( m P k ) -> ( ( ( ph /\ r e. ran P ) -> ( C ` r ) e. r ) <-> ( ( ph /\ ( m P k ) e. ran P ) -> ( C ` ( m P k ) ) e. ( m P k ) ) ) ) |
75 |
68 74 7
|
vtocl |
|- ( ( ph /\ ( m P k ) e. ran P ) -> ( C ` ( m P k ) ) e. ( m P k ) ) |
76 |
55 67 75
|
syl2anc |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( C ` ( m P k ) ) e. ( m P k ) ) |
77 |
62 76
|
sseldd |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( C ` ( m P k ) ) e. S ) |
78 |
54 77
|
eqeltrd |
|- ( ( ph /\ k e. NN /\ m e. Z ) -> ( m H k ) e. S ) |
79 |
42 44 48 78
|
syl3anc |
|- ( ( ( ( ph /\ k e. NN ) /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( m H k ) e. S ) |
80 |
36 39 40 79
|
saliincl |
|- ( ( ( ph /\ k e. NN ) /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) ( m H k ) e. S ) |
81 |
33 35 80
|
saliuncl |
|- ( ( ph /\ k e. NN ) -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) e. S ) |
82 |
2 30 32 81
|
saliincl |
|- ( ph -> |^|_ k e. NN U_ n e. Z |^|_ m e. ( ZZ>= ` n ) ( m H k ) e. S ) |
83 |
6 82
|
eqeltrid |
|- ( ph -> I e. S ) |
84 |
|
incom |
|- ( D i^i I ) = ( I i^i D ) |
85 |
2 28 83 84
|
elrestd |
|- ( ph -> ( D i^i I ) e. ( S |`t D ) ) |