| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimlem1.1 |
|
| 2 |
|
smflimlem1.2 |
|
| 3 |
|
smflimlem1.3 |
|
| 4 |
|
smflimlem1.4 |
|
| 5 |
|
smflimlem1.5 |
|
| 6 |
|
smflimlem1.6 |
|
| 7 |
|
smflimlem1.7 |
|
| 8 |
|
fvex |
|
| 9 |
1 8
|
eqeltri |
|
| 10 |
|
uzssz |
|
| 11 |
1
|
eleq2i |
|
| 12 |
11
|
biimpi |
|
| 13 |
10 12
|
sselid |
|
| 14 |
|
uzid |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
ne0d |
|
| 17 |
|
fvex |
|
| 18 |
17
|
dmex |
|
| 19 |
18
|
rgenw |
|
| 20 |
19
|
a1i |
|
| 21 |
|
iinexg |
|
| 22 |
16 20 21
|
syl2anc |
|
| 23 |
22
|
rgen |
|
| 24 |
|
iunexg |
|
| 25 |
9 23 24
|
mp2an |
|
| 26 |
25
|
rabex |
|
| 27 |
3 26
|
eqeltri |
|
| 28 |
27
|
a1i |
|
| 29 |
|
nnct |
|
| 30 |
29
|
a1i |
|
| 31 |
|
nnn0 |
|
| 32 |
31
|
a1i |
|
| 33 |
2
|
adantr |
|
| 34 |
1
|
uzct |
|
| 35 |
34
|
a1i |
|
| 36 |
33
|
adantr |
|
| 37 |
|
eqid |
|
| 38 |
37
|
uzct |
|
| 39 |
38
|
a1i |
|
| 40 |
16
|
adantl |
|
| 41 |
|
simpll |
|
| 42 |
41
|
adantllr |
|
| 43 |
|
simpll |
|
| 44 |
43
|
adantlll |
|
| 45 |
1
|
uztrn2 |
|
| 46 |
45
|
ssd |
|
| 47 |
46
|
sselda |
|
| 48 |
47
|
adantll |
|
| 49 |
|
simp3 |
|
| 50 |
|
simp2 |
|
| 51 |
|
fvex |
|
| 52 |
51
|
a1i |
|
| 53 |
5
|
ovmpt4g |
|
| 54 |
49 50 52 53
|
syl3anc |
|
| 55 |
|
simp1 |
|
| 56 |
|
eqid |
|
| 57 |
56 2
|
rabexd |
|
| 58 |
55 57
|
syl |
|
| 59 |
4
|
ovmpt4g |
|
| 60 |
49 50 58 59
|
syl3anc |
|
| 61 |
|
ssrab2 |
|
| 62 |
60 61
|
eqsstrdi |
|
| 63 |
57
|
ralrimivw |
|
| 64 |
63
|
ralrimivw |
|
| 65 |
64
|
3ad2ant1 |
|
| 66 |
4
|
elrnmpoid |
|
| 67 |
49 50 65 66
|
syl3anc |
|
| 68 |
|
ovex |
|
| 69 |
|
eleq1 |
|
| 70 |
69
|
anbi2d |
|
| 71 |
|
fveq2 |
|
| 72 |
|
id |
|
| 73 |
71 72
|
eleq12d |
|
| 74 |
70 73
|
imbi12d |
|
| 75 |
68 74 7
|
vtocl |
|
| 76 |
55 67 75
|
syl2anc |
|
| 77 |
62 76
|
sseldd |
|
| 78 |
54 77
|
eqeltrd |
|
| 79 |
42 44 48 78
|
syl3anc |
|
| 80 |
36 39 40 79
|
saliincl |
|
| 81 |
33 35 80
|
saliuncl |
|
| 82 |
2 30 32 81
|
saliincl |
|
| 83 |
6 82
|
eqeltrid |
|
| 84 |
|
incom |
|
| 85 |
2 28 83 84
|
elrestd |
|