Metamath Proof Explorer


Theorem smflimlem1

Description: Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of Fremlin1 p. 38 . This lemma proves that ( D i^i I ) is in the subspace sigma-algebra induced by D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem1.1 Z=M
smflimlem1.2 φSSAlg
smflimlem1.3 D=xnZmndomFm|mZFmxdom
smflimlem1.4 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
smflimlem1.5 H=mZ,kCmPk
smflimlem1.6 I=knZmnmHk
smflimlem1.7 φrranPCrr
Assertion smflimlem1 φDIS𝑡D

Proof

Step Hyp Ref Expression
1 smflimlem1.1 Z=M
2 smflimlem1.2 φSSAlg
3 smflimlem1.3 D=xnZmndomFm|mZFmxdom
4 smflimlem1.4 P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
5 smflimlem1.5 H=mZ,kCmPk
6 smflimlem1.6 I=knZmnmHk
7 smflimlem1.7 φrranPCrr
8 fvex MV
9 1 8 eqeltri ZV
10 uzssz M
11 1 eleq2i nZnM
12 11 biimpi nZnM
13 10 12 sselid nZn
14 uzid nnn
15 13 14 syl nZnn
16 15 ne0d nZn
17 fvex FmV
18 17 dmex domFmV
19 18 rgenw mndomFmV
20 19 a1i nZmndomFmV
21 iinexg nmndomFmVmndomFmV
22 16 20 21 syl2anc nZmndomFmV
23 22 rgen nZmndomFmV
24 iunexg ZVnZmndomFmVnZmndomFmV
25 9 23 24 mp2an nZmndomFmV
26 25 rabex xnZmndomFm|mZFmxdomV
27 3 26 eqeltri DV
28 27 a1i φDV
29 nnct ω
30 29 a1i φω
31 nnn0
32 31 a1i φ
33 2 adantr φkSSAlg
34 1 uzct Zω
35 34 a1i φkZω
36 33 adantr φknZSSAlg
37 eqid n=n
38 37 uzct nω
39 38 a1i φknZnω
40 16 adantl φknZn
41 simpll φnZmnφ
42 41 adantllr φknZmnφ
43 simpll knZmnk
44 43 adantlll φknZmnk
45 1 uztrn2 nZjnjZ
46 45 ssd nZnZ
47 46 sselda nZmnmZ
48 47 adantll φknZmnmZ
49 simp3 φkmZmZ
50 simp2 φkmZk
51 fvex CmPkV
52 51 a1i φkmZCmPkV
53 5 ovmpt4g mZkCmPkVmHk=CmPk
54 49 50 52 53 syl3anc φkmZmHk=CmPk
55 simp1 φkmZφ
56 eqid sS|xdomFm|Fmx<A+1k=sdomFm=sS|xdomFm|Fmx<A+1k=sdomFm
57 56 2 rabexd φsS|xdomFm|Fmx<A+1k=sdomFmV
58 55 57 syl φkmZsS|xdomFm|Fmx<A+1k=sdomFmV
59 4 ovmpt4g mZksS|xdomFm|Fmx<A+1k=sdomFmVmPk=sS|xdomFm|Fmx<A+1k=sdomFm
60 49 50 58 59 syl3anc φkmZmPk=sS|xdomFm|Fmx<A+1k=sdomFm
61 ssrab2 sS|xdomFm|Fmx<A+1k=sdomFmS
62 60 61 eqsstrdi φkmZmPkS
63 57 ralrimivw φksS|xdomFm|Fmx<A+1k=sdomFmV
64 63 ralrimivw φmZksS|xdomFm|Fmx<A+1k=sdomFmV
65 64 3ad2ant1 φkmZmZksS|xdomFm|Fmx<A+1k=sdomFmV
66 4 elrnmpoid mZkmZksS|xdomFm|Fmx<A+1k=sdomFmVmPkranP
67 49 50 65 66 syl3anc φkmZmPkranP
68 ovex mPkV
69 eleq1 r=mPkrranPmPkranP
70 69 anbi2d r=mPkφrranPφmPkranP
71 fveq2 r=mPkCr=CmPk
72 id r=mPkr=mPk
73 71 72 eleq12d r=mPkCrrCmPkmPk
74 70 73 imbi12d r=mPkφrranPCrrφmPkranPCmPkmPk
75 68 74 7 vtocl φmPkranPCmPkmPk
76 55 67 75 syl2anc φkmZCmPkmPk
77 62 76 sseldd φkmZCmPkS
78 54 77 eqeltrd φkmZmHkS
79 42 44 48 78 syl3anc φknZmnmHkS
80 36 39 40 79 saliincl φknZmnmHkS
81 33 35 80 saliuncl φknZmnmHkS
82 2 30 32 81 saliincl φknZmnmHkS
83 6 82 eqeltrid φIS
84 incom DI=ID
85 2 28 83 84 elrestd φDIS𝑡D