Step |
Hyp |
Ref |
Expression |
1 |
|
smflimlem1.1 |
|
2 |
|
smflimlem1.2 |
|
3 |
|
smflimlem1.3 |
|
4 |
|
smflimlem1.4 |
|
5 |
|
smflimlem1.5 |
|
6 |
|
smflimlem1.6 |
|
7 |
|
smflimlem1.7 |
|
8 |
|
fvex |
|
9 |
1 8
|
eqeltri |
|
10 |
|
uzssz |
|
11 |
1
|
eleq2i |
|
12 |
11
|
biimpi |
|
13 |
10 12
|
sselid |
|
14 |
|
uzid |
|
15 |
13 14
|
syl |
|
16 |
15
|
ne0d |
|
17 |
|
fvex |
|
18 |
17
|
dmex |
|
19 |
18
|
rgenw |
|
20 |
19
|
a1i |
|
21 |
|
iinexg |
|
22 |
16 20 21
|
syl2anc |
|
23 |
22
|
rgen |
|
24 |
|
iunexg |
|
25 |
9 23 24
|
mp2an |
|
26 |
25
|
rabex |
|
27 |
3 26
|
eqeltri |
|
28 |
27
|
a1i |
|
29 |
|
nnct |
|
30 |
29
|
a1i |
|
31 |
|
nnn0 |
|
32 |
31
|
a1i |
|
33 |
2
|
adantr |
|
34 |
1
|
uzct |
|
35 |
34
|
a1i |
|
36 |
33
|
adantr |
|
37 |
|
eqid |
|
38 |
37
|
uzct |
|
39 |
38
|
a1i |
|
40 |
16
|
adantl |
|
41 |
|
simpll |
|
42 |
41
|
adantllr |
|
43 |
|
simpll |
|
44 |
43
|
adantlll |
|
45 |
1
|
uztrn2 |
|
46 |
45
|
ssd |
|
47 |
46
|
sselda |
|
48 |
47
|
adantll |
|
49 |
|
simp3 |
|
50 |
|
simp2 |
|
51 |
|
fvex |
|
52 |
51
|
a1i |
|
53 |
5
|
ovmpt4g |
|
54 |
49 50 52 53
|
syl3anc |
|
55 |
|
simp1 |
|
56 |
|
eqid |
|
57 |
56 2
|
rabexd |
|
58 |
55 57
|
syl |
|
59 |
4
|
ovmpt4g |
|
60 |
49 50 58 59
|
syl3anc |
|
61 |
|
ssrab2 |
|
62 |
60 61
|
eqsstrdi |
|
63 |
57
|
ralrimivw |
|
64 |
63
|
ralrimivw |
|
65 |
64
|
3ad2ant1 |
|
66 |
4
|
elrnmpoid |
|
67 |
49 50 65 66
|
syl3anc |
|
68 |
|
ovex |
|
69 |
|
eleq1 |
|
70 |
69
|
anbi2d |
|
71 |
|
fveq2 |
|
72 |
|
id |
|
73 |
71 72
|
eleq12d |
|
74 |
70 73
|
imbi12d |
|
75 |
68 74 7
|
vtocl |
|
76 |
55 67 75
|
syl2anc |
|
77 |
62 76
|
sseldd |
|
78 |
54 77
|
eqeltrd |
|
79 |
42 44 48 78
|
syl3anc |
|
80 |
36 39 40 79
|
saliincl |
|
81 |
33 35 80
|
saliuncl |
|
82 |
2 30 32 81
|
saliincl |
|
83 |
6 82
|
eqeltrid |
|
84 |
|
incom |
|
85 |
2 28 83 84
|
elrestd |
|